

Knabe Beratende Ingenieure GmbH Gasstraße 18, Haus 4 22761 Hamburg Betreuer: Dr.-Ing Eckard Schmidt

Diplomarbeit

Analyse der Belastung auf Kajen, Böschungen und Sohlen

bei Anlegemanövern von Schiffen mit großer Leistung

und unter Einsatz von Bugstrahlruder

cand.-ing. Lena Bruderreck Matr.-Nr. 0421924

Hamburg, März 2010

Fachbereich D: Bauingenieurwesen, Maschinenbau, Sicherheitstechnik Abteilung: Bauingenieurwesen Institut für Grundbau, Abfall- und Wasserwesen (IGAW) Lehr- und Forschungsgebiet Wasserwirtschaft und Wasserbau Betreuer: Univ.-Prof. Dr.-Ing. Andreas Schlenkhoff

Versicherung der selbständigen Erarbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt, keine anderen als die angegebenen Hilfsmittel benutzt und die Stellen der Diplomarbeit, die im Wortlaut oder im wesentlichen Inhalt aus anderen Werken entnommen wurden, mit genauer Quellenangabe kenntlich gemacht habe.

Ort, Datum

Lena Bruderreck

BERGISCHE UNIVERSITÄT WUPPERTAL

△ 42097 Wuppertal
 Telefax (0202) 439-2901
 Telefon (0202) 439-0
 www.uni-wuppertal.de

Fachbereich D <u>Abteilung Bauingenieurwesen</u> Institut für Grundbau, Abfall- und Wasserwesen (IGAW)

Univ.-Prof. Dr.-Ing. A. Schlenkhoff Wasserwirtschaft und Wasserbau Pauluskirchstr. 7 42285 Wuppertal

Diplomaufgabe für Frau cand.-ing. Lena Bruderreck

Analyse der Belastung auf Kajen, Böschungen und Sohlen bei Anlegemanövern von Schiffen mit großer Leistung und unter Einsatz von Bugstrahlruder

Der Umschlag von Containern im Schiffsverkehr hat in den letzten Jahren weltweit zugenommen. Der Hauptantrieb dieser Schiffe erfolgt durch den Heckpropeller. Eine bessere Manövrierfähigkeit wird durch das Querstrahlruder (Bugstrahlruder) bewirkt. In den letzten Jahren werden Anlegemanöver in Häfen zunehmend unter Einsatz von Querstrahlrudern durchgeführt. Mit dem Anstieg der Schiffsgrößen haben auch die Antriebsleistungen der Schiffe, sowohl für den Hauptantrieb (Heckpropeller) als auch für das Querstrahlruder zugenommen. Der von den Schiffsantrieben erzeugte Strahl trifft auf Hafenstrukturen wie Kajen, Böschungen und Sohlen. Diese Strukturen sind zu sichern, damit die Funktionsfähigkeit und die Standsicherheiten nicht gefährdet werden.

Bei der Strahlerzeugung durch ein Querstrahlruder werden folgenden Zonen unterschieden:

- Kernzone,
- Zone der ungestörten Strahlausbreitung,
- Zone in der die Strahlausbreitung durch Wasserspiegel, Sohle und Kaiwand beeinflusst wird (s.a. Abbildung 1 und 2).

Bei der Ermittlung der induzierten Geschwindigkeit liegen im Augenblick zwei ähnliche aber gleichwohl unterschiedliche Ansätze vor. In Deutschland wird als Kenngröße der Durchmesser des Propellers angesetzt, im internationalen Bereich teilweise der sogenannte "eingeschnürte" Querschnitt. Entscheidend für die Ermittlung der induzierten Geschwindigkeit ist die Wahl mit welcher Leistung sich ein Schiff während der Manöver im Hafen bewegt.

Die maßgebenden Normen sind das BAW Mitteilungsblatt Nr.87 "Grundlagen zur Bemessung von Böschungs- und Sohlensicherungen an Binnenwasserstraßen" und die Empfehlungen des Arbeitsausschusses "Ufereinfassungen" Häfen und Wasserstraßen, EAU 2004. Im internationalen Bereich sind die guidelines der PIANC (Permanent International Association of Navigation Congress) maßgebend. Hier ist der report der Working Group 22: Guidelines for the design of armoured slopes under open piled quay walls (PIANC, 1997, Supplement to Bulletin 96, 38pp) zu nennen.

Seite 2

Diese guidelines werden im Augenblick überarbeitet. Von der PIANC wurde dazu die Arbeitsgruppe PIANC MarCom WG 48 eingesetzt. Von dieser Working Group wird im Augenblick die "Guidelines for berthing structures, related to bow thrusters" erstellt. Der Bericht wird für das Frühjahr 2010 erwartet.

Im Rahmen der Diplomarbeit sind die maßgebenden Normen zu sichten und die unterschiedlichen Ansätze aufzuzeigen und zu vergleichen. Auch sind aktuelle Forschungsergebnisse zu berücksichtigen, insbesondere die Arbeiten von Schokking "Bowthruster –induced damage" (2002) und von Roubos (2006).

Zudem sollen vorliegende Pilotcards ergänzt und ausgewertet werden. In den Häfen haben die Schiffsführer sog. Pilotcards zu erstellen. Dort sind die maßgebenden Daten bei Anlegemanövern aufgezeichnet. Nachfolgend sind sie mit den Angaben in den vorliegenden Empfehlungen zu vergleichen. Abweichungen oder Übereinstimmungen sind zu bewerten.

Im Rahmen dieser Diplomarbeit soll die oben beschriebene Problematik aufgegriffen werden und die Analysen sollen in enger Abstimmung mit dem Ingenieurbüro Knabe Beratende Ingenieure GmbH, Hamburg und der Bergischen Universität durchgeführt werden. Ansprechpartner bei dem Ingenieurbüro Knabe und externer Betreuer ist Dr.-Ing. Eckhard Schmidt. Hierbei sind die folgenden Fragestellungen besonders zu bearbeiten:

Aufgabenteil 1: Grundlagen und Literaturstudium

Aufgabenteil 1.1: Erfassung und Klärung der Aufgabenstellung

In einem ersten Schritt soll die Aufgabenstellung in Abstimmung mit dem Büro Knabe und dem Lehrstuhl erfasst und offene Fragen geklärt werden. Hierzu sind die in der Aufgabenstellung genannten Daten (pilotcards) auf Vollständigkeit und Brauchbarkeit zu überprüfen. Eine mündliche Abstimmung ist nach ca. zwei Wochen vorzunehmen und zu protokollieren.

Aufgabenteil 1.2: Sichtung und Bewertung der vorliegenden Berichte und weitergehendes Literaturstudium

Um sich in die gestellte Thematik einzuarbeiten sollen folgende Unterlagen zuerst studiert werden:

- 1. PIANC Guideline (1997)
- 2. EAU 2004
- 3. BAW Mitteilungen 87 (2004)
- 4. Verschiedene wissenschaftliche Arbeiten und Aufsätze (seit 2004)

Anschließend soll eine weitergehende Literaturstudie vorgenommen werden und die neueren, seit etwa 2004/2005 in den Fachzeitschriften veröffentlichten beiträge, soweit vorhanden, verfolgt und kommentiert werden.

Aufgabenteil 2: Hydrodynamische Analyse des Strahlantriebs und der daraus folgenden Belastung

Aufgabenteil 2.1: Kurzdarstellung zur allgemeinen Hydrodynamik des Strahls (Jet)

Hier soll auf der Grundlage von Lehrbüchern zur Strömungsmechanik und ergänzenden Fachveröffentlichungen die Generierung, Ausbreitung und der Impulsfluss des Strahls dargelegt werden. Zudem sind sowohl der Einfluss der Antriebsleistung als auch die Wirkung auf die bautechnischen Anlagen (Wände, Sohle, Hindernisse, etc.) darzustellen. Weiterhin sind die Einflüsse auf und durch die Berandung und den Schiffskörper zu diskutieren.

Aufgabenteil 2.2: Bemessungsgrundlagen für Deckwerke

Hier sollen die allgemeinen Grundlagenformeln zur Bemessung von Deckwerken im Wasserbau diskutiert werden. Insbesondere sollen die Kräfte am einzelnen Stein und an einem Stein im Verbund dargestellt werden. Zudem sind die Einflüsse unterschiedlicher Steindichten, Steingrößen und gegebenenfalls die Art und Weise des Einbringens und der Lagerung zu untersuchen. Zusätzlich sind Überlegungen anzustellen, welche Möglichkeiten der nachträglichen Stabilisierung des Deckwerkes gegeben sind und mit welchen Mitteln eine solche Verstärkung erreicht werden könnte.

Aufgabenteil 2.3: Ergänzung und Analyse der PilotCards

In Abhängigkeit der Ergebnisse unter Punkt 1 sind die PilotCards auszuwerten. Hierbei ist insbesondere zu klären, ob die dort aufgeführten Informationen aus betrieblicher oder entwurfstechnischer Sicht verwendbare Hinweise enthalten. Soweit dies nicht der Fall ist soll versucht werden entsprechende Merkmale aufzulisten, die für solche Zwecke verwendet werden könnten. Zudem ist diese Frage mit Vertretern des Hafens Hamburg oder Bremen zu diskutieren (gegebenenfalls per Fragebogenaktion).

Aufgabenteil 2.4:

Diskussion der Einzelergebnisse und zum Leistungsansatz

In diesem Aufgabenteil soll der in den Richtlinien verwendete Ansatz (Leistungsansatz) ausführlicher diskutiert werden und mit den oben genannten Einzelergebnissen in Zusammenhang gebracht werden.

Aufgabenteil 3: Zusätzliche Dokumentation

Aufgabenteil 3.1: Zusammenfassung und Ausblick

Die schriftliche Ausarbeitung soll mit einer ausführlichen Zusammenfassung und einem Ausblick auf mögliche oder notwendige weitergehende Bearbeitungen schließen. Die Zusammenfassung soll zudem in sich und für sich alleine eine hinreichende Darstellung der Problematik und der erzielten Ergebnisse beinhalten. Die Zusammenfassung sollte eine Form aufweisen, die als Grundlage für einen Fachbeitrag zum Beispiel in der Hansa oder der Bulletin verwendet werden könnte und darf 10 Seiten nicht überschreiten.

Aufgabenteil 3.2: Präsentation

Es ist eine kurze Präsentation zu erstellen und bei Abgabe der schriftlichen Arbeit vorzulegen. Die Präsentation sollte geeignet sein für sich alleine eine hinreichende Darstellung der Problematik und der erzielten Ergebnisse zu geben. Die Präsentation sollte eine Form aufweisen, die als Grundlage für einen Fachbeitrag auf einer Fachtagung verwendet werden könnte und darf 15 Folien nicht überschreiten.

Hinweise zur Bearbeitung:

Die Kandidatin soll mit der Bearbeitung dieser Diplomaufgabe zeigen, dass sie eine komplexe Aufgabenstellung im Bauingenieurwesen (Wasserbau) selbständig nach wissenschaftlichen Methoden fundiert bearbeiten kann. Dabei soll sie eine kritische Diskussion der Teilergebnisse führen und diese mit der Fachliteratur vergleichen. Die Darstellungen sind mit entsprechenden Grafiken und Diagrammen zu unterstützen. Die Bearbeitung dieser Diplomaufgabe soll in einer "klassischen" schriftlichen Ausarbeitung (3-fach) zum Abschluss gebracht werden und ist in enger Kooperation mit den Betreuern Univ.-Prof. Dr.-Ing. A. Schlenkhoff sowie Dr. E. Schmidt von Knabe Beratende Ingenieure durchzuführen.

Aufgestellt:

Dr.-Ing. E. Schmidt Hamburg, 16.12.2009

Wir wünschen der Kandidatin bei der Bearbeitung dieser Aufgabe viel Erfolg.

(Univ.-Prof. Dr.-Ing. A. Schlenkhoff)

(Dipl.-Ing. D. Heinz)

Wuppertal, 17.12.2009

Anlagen Abbildung 1 und Abbildung 2

Bergische Universität Wuppertal Diplomarbeit für Frau cand.-ing. Bruderreck (Mat.-Nr.: 421924)

Beim Querstrahlruder wird der auf die Kaje treffende Strahl wird in Richtung Wasseroberfläche und Hafensohle umgelenkt.

Abb2.: Ausbreitung des Propellerstrahles im Bereich der Kernzone

Inhaltsverzeichnis

Abbildungsverzeichnis III				
TabellenverzeichnisVI				
Symbole und AbkürzungenVIII				
1	Einleitung 1			
2	Allgemeines zum Hafenbau 3			
2.1	Kaimauern 3			
2.2	Böschungen und Sohlen5			
2.3	Deckwerkskomponenten 6			
2.3.1	Wasserbausteine 6			
2.3.2	Verguss, Filter-, Trennlagen und Dichtungssysteme8			
2.4	Hohlraumgehalt9			
2.5	Bauweisen der Deckschicht9			
2.5.1	Durchlässige Deckschicht aus losen Wasserbausteinen 10			
2.5.2	Durchlässige Deckschicht aus teilvergossenen Wasserbausteinen 10			
2.5.3	Durchlässige Deckschicht aus vollvergossenen Wasserbausteinen 11			
2.6	Deckschichtdicken 12			
3	Schiffsbedingte Strahlerzeugung13			
3.1	Propeller 13			
3.2	Propellerstrahl16			
3.2.1	Induzierte Anfangsgeschwindigkeit 17			
3.2.2	Geschwindigkeitsverteilung im Strahl			
3.2.3	Standardsituationen der Strahlausbreitung 27			
3.2.4	Strahlerzeugung eines Bugstrahlruders 30			
4	Bemessung und Schutzmaßnahmen			
4.1	Belastung der Kaimauern 36			
4.2	Belastung der Böschungen und Sohlen 37			
4.2.1	Bemessungsrelevante Kräfte			

4.2.2	Gleichgewicht am einzelnen Stein 42			
4.2.3	Gleichgewicht am Stein im Verbund 45			
4.3	Schutzmaßnahmen gegen Kolke 47			
4.3.1	Kolkzuschlag 48			
4.3.2	Lockere Steinschüttung 48			
4.3.3	Verbundsystem			
4.3.4	Unterwasserbetonsohle 50			
4.3.5	Strahlumlenker			
4.3.6	Mindestabmessungen der Schutzmaßnahmen 53			
4.4	Bemessung der erforderlichen Steingröße und der Kolktiefe 54			
4.5	Kaimauern und Umgang mit Kolken im Hamburger Hafen 57			
5	Beeinflussung des Propellerstrahls 60			
5.1	Ansätze für Leistungen und Umdrehungen 60			
5.2	Analyse der Ansätze für die Leistung und die Umdrehungen			
	anhand von <i>PilotCards</i> 63			
5.3	Auswertung und Diskussion der Ansätze für Leistung und Umdrehungen			
6	Bemessung am Beispiel der Emma Maersk 80			
6.1	Induzierte Anfangsgeschwindigkeit: 81			
6.2	Maximale Geschwindigkeiten in den Zonen der Strahlentwicklung 82			
6.3	Maximale Sohlgeschwindigkeit84			
6.4	Erforderlicher Steindurchmesser 85			
6.5	Kolktiefe			
6.6	Mindestabmessungen			
7	Zusammenfassung und Ausblick 89			
Literaturverzeichnis				
ANHANG 103				

Abbildungsverzeichnis

Abb. 2.1:	Offene Senkkästen [BRINKMANN, 2005] 3
Abb. 2.2:	Blockbauweise [BRINKMANN, 2005]3
Abb. 2.3:	Einfach verankerte Spundwände [BRINKMANN, 2005]4
Abb. 2.4:	Mehrfach verankerte Spundwände [BRINKMANN, 2005]4
Abb. 2.5:	Pfahlkonstruktionen mit landseitiger Spundwand
	[BRINKMANN, 2005]5
Abb. 2.6:	Pfahlkonstruktionen mit wasserseitiger Spundwand
	[BRINKMANN, 2005]5
Abb. 2.7:	Definition der Bemessungswerte G_{50} beispielhaft für eine
	LMB _{5/40} Klasse [MAR, 2008]7
Abb. 2.8:	Zusammenhang zwischen Durchmesser D und nominalen
	Durchmesser <i>D_n</i> [KAYSER, 2006]8
Abb. 2.9:	Deckschicht aus losen Wasserbausteinen [MAR, 2008] 10
Abb. 2.10:	Deckschicht aus teilvergossenen Wasserbausteinen
	[Mar, 2008] 10
Abb. 2.11:	Deckschicht aus vollvergossenen Wasserbausteinen
	[Mar, 2008]
Abb. 2.12:	Empfohlene Deckschichtdicken (lose Wasserbausteine) für
	Böschung und Sohle unter Beachtung der Böden [MAR, 2008] 12
Abb. 3.1 a/b:	Bugstrahlruder [SCHOTTEL, 2010]14
Abb. 3.2:	Fixed Pitch Propeller (FPP) [KAMOME, 2010]15
Abb. 3.3:	Controllable Pitch Propeller (CPP) [SCHOTTEL, 2010]15
Abb. 3.4:	Zonen der Strahlentwicklung [Schmidt, 1998] 16
Abb. 3.5:	Der Propeller als idealer Druckbeschleuniger
Abb. 3.6:	Darstellung des eingeschnürten Strahlquerschnitts D ₀ 22
Abb. 3.7:	Geschwindigkeitsverteilung im Strahl nach der Theorie von
	ALBERTSON ET AL. [1948], in [SCHMIDT, 1998]

Abb. 3.8:	Standardsituation 1 [GBB, 2004]27
Abb. 3.9:	Standardsituation 2 [GBB, 2004]
Abb. 3.10:	Standardsituation 3 [GBB, 2004]
Abb. 3.11:	Standardsituation 4 [GBB, 2004]
Abb. 3.12:	Propellerstrahlzonen eines Bugstrahlruders beim Auftreffen
	auf eine Kaimauer nach SCHMIDT [1998]32
Abb. 4.1:	Kolk vor der Kaimauer infolge der Belastung aus dem
	Bugstrahlruder [SCHMIDT, 1998]
Abb. 4.2:	Belastung der Böschung infolge des Propellerstrahls
Abb. 4.3:	Kräfte am einzelnen Stein an der Sohle 42
Abb. 4.4:	Kräfte am einzelnen Stein mit Böschungsneigung β
Abb. 4.5:	Kräfte am Stein im Verbund an der Sohle 46
Abb. 4.6:	Kräfte am Stein im Verbund mit Böschungsneigung β
Abb. 4.7:	Mindestabmessungen für einen Strahlumlenker nach
	Röмisch [2001] 51
Abb. 4.8:	Mindestabmessungen von Befestigungen vor einer
	Kaimauer [EAU, 2004]53
Abb. 4.9:	Kolktiefe T_k infolge Hecktantrieb [SCHMIDT, 1998]
Abb. 4.10:	Hamburger Querschnitt (Beispiel: Burchardkai) [HPA, 2009] 58
Abb. 5.1:	PilotCard der Emma Mærsk [SCHMIDT, 2010]64
Abb. 5.2:	Vergleich Full ahead und PIANC [2008]66
Abb. 5.3:	Vergleich Full ahead und PIANC [1997]66
Abb. 5.4:	Vergleich Half ahead und PIANC [2008]67
Abb. 5.5:	Vergleich Half ahead und PIANC [1997]67
Abb. 5.6:	Vergleich Half ahead und EAU [1996]68
Abb. 5.7:	Vergleich Slow ahead und PIANC [2008]69
Abb. 5.8:	Vergleich Slow ahead und PIANC [1997]69
Abb. 5.9:	Vergleich Slow ahead und EAU [1996]69
Abb. 5.10:	Vergleich Dead slow ahead und PIANC [2008]

Abb. 5.11:	Vergleich Dead slow ahead und PIANC [1997]	70
Abb. 5.12:	Vergleich <i>Dead slow ahead</i> und EAU [1996]	71
Abb. 5.13:	Überblick über die Analyseergebnisse für die einzelnen	
	Manöver	76
Abb. 5.14:	Übersicht über die Ermittlung der jeweiligen Leistungen aus den	
	Umdrehungen nach unterschiedlichen Exponenten $i = 1, 2, 3$	
	am Beispiel der Empfehlungen für Hafenmanöver	79
Abb. 6.2:	Heck der Emma Mærsk [SHIPMARINE, 2010]	80
Abb. 6.1:	Emma Mærsk [CAPTAIN, 2010]	81
Abb. 6.3:	Abnahme von v _{max} in Zone 2 und 3	83
Abb. 7.1:	Ausschnitt aus der PilotCard der Emma Mærsk	92

Tabellenverzeichnis

Tab. 2.1:	50 % - Werte für Standard Steinklassen loser
	Deckschichten [MAR, 2008]7
Tab. 2.2:	Hohlraumgehalt von Deckschichten in Abhängigkeit
	vom Einbauverfahren [MAR, 2008]9
Tab. 4.1:	Strahlteilungsverhältnis C_{α} und Kolkreduktionsfaktor C_{SL}
Tab. 5.1:	Übersicht der Ansätze von Leistungen und Umdrehungen
	nach den EAU [1996], der PIANC [1997] und der PIANC [2008]
	(in % zu den maximalen)62
Tab. 5.2:	Berechnung der prozentualen Anteile der Umdrehungen
	bezogen auf die maximalen Umdrehungen für die
	Emma Mærsk 65
Tab. 5.3:	Analyseergebnis im Vergleich zu den Ansätzen für
	die Umdrehungen der72
Tab. 5.4:	Überprüfung des Zusammenhangs $P[\%] = (n[\%])^3$ anhand
	der Leistungs- und Umdrehungsansätze von EAU [1996],
	PIANC [1997] und PIANC [2008]75
Tab. 5.5:	Ermittlung des Exponenten für den Zusammenhang
	zwischen Umdrehungen und Leistung nach PIANC [2008]77
Tab. 5.6:	Analyseergebnisse (für unterschiedliche Exponenten $i = 1,2,3$)
	im Vergleich zu den Leistungsansätzen nach den EAU [1996]
	der PIANC [1997] und der PIANC [2008]78
Tab. 7.1:	Ansätze für die Anzahl der Umdrehungen pro Minute
	[EAU, 1996; PIANC, 1997 und PIANC, 2008] und Ergebnisse
	der Analyse91
Tab. 7.2:	Ansätze für die Leistung [EAU, 1996; PIANC, 1997 und
	PIANC, 2008]

Symbole und Abkürzungen

Symbol	Bezeichnung	Dimension	
A_D	angeströmte Fläche	[m ²]	
C _P	Faktor für Rohrgeometrie und Austrittsquerschnitt	[-]	
С	Konstante der Geschwindigkeitsfunktion	[-]	
c _D	Anströmbeiwert	[-]	
C _M	Beschleunigungsbeiwert	[-]	
d_{85}	maßgebendes Korn der Hafensohle	[m]	
d _{erf}	erforderlicher Durchmesser	[m]	
D	Propellerdurchmesser	[m]	
D_B	Propellerdurchmesser des Bugstrahlruders	[m]	
<i>D</i> ₀	eingeschnürter Durchmesser	[m]	
F_D	Schubkraft	[kN]	
F_L	Liftkraft	[kN]	
F_S	Beschleunigungskraft	[kN]	
F_R	Reibungskraft	[kN]	
f_P	Faktor zur einsetzbaren Maschinenleistung	[-]	
G	Eigengewicht der Steinschüttung	[kN]	
h _{Matt}	Höhe der Matte	[m]	
J	Propellerfortschrittsgrad = $\frac{v_A}{n*D}$	[-]	
k_T	Schubbeiwert des Propellers	[-]	
$k_{T,DP}$	Schubbeiwert des Propellers	[-]	
L	Abstand zwischen Propeller und Kaimauer	[m]	
n	Umdrehungen des Propellers	[U/min]	

n _{max}	maximale Umdrehungen des Propellers	[U/min]
Р	Propellerleistung	[kW]
P _{max}	maximale Propellerleistung	[U/min]
P_S	Konstruktionssteigung	[m]
$\frac{P_S}{D}$	Konstruktionssteigungsverhältnis	[-]
Т	Schubkraft hinter dem Propeller	[N]
T_K	Kolktiefe	[m]
V	Volumen des Steinelementes	[m ³]
v_A	Anströmungsgeschwindigkeit des Propellers	[m/s]
v_0	induzierte Anfangsgeschwindigkeit	[m/s]
v_x	Geschwindigkeit an beliebigem Punkt im Strahl	[m/s]
$v_{x,max}$	Zentralgeschwindigkeit (Achsgeschwindigkeit)	[m/s]
v _{max ,So}	maximale Sohlgeschwindigkeit	[m/s]
α*	Einbettungsziffer	[-]
β	Böschungsneigung	[°]
ŶW	Wichte des Wassers	[kN/m ³]
Υs	Wichte des Steines	[kN/m ³]
$\Delta \gamma$	Anteil der Wichte	[kN/m ³]
arphi	Reibungswinkel	[°]
$\frac{dv}{dt}$	Beschleunigung	[m/s ²]
$ ho_W$	Dichte des Wassers	[kg/m³]
ζs΄	Rohdichte der Matte	[t/m ³]

1 Einleitung

Der weltweite Zuwachs von Umschlagmengen im Schiffsverkehr in den letzten Jahren hat eine Vergrößerung der Schiffe zur Folge. Damit verbunden ist die Zunahme der Antriebsleistung für den Heckpropeller und das Bugstrahlruder. Besonders bei den An- und Ablegemanövern kommt es aufgrund dessen zu hochturbulenten Strahlerscheinungen, die erosionsintensiv sind. Der Propellerstrahl trifft auf die Kajen (im Folgenden als Kaimauern bezeichnet), die Böschungen und die Sohlen, deren Standsicherheit im Hinblick auf die Belastung zu gewährleisten ist.

Zur Einführung in die Thematik wird Allgemeines zum Kaimauerbau und der Herstellung von Böschungen aufgeführt. Es erfolgt die Darstellung der schiffsbedingten Strahlerzeugung. Übliche Propellertypen werden vorgestellt und die Zonen der Strahlentwicklung (Strahlinduktion, Strahlausbreitung und Strahlerosion) ausführlich betrachtet und erläutert.

Die Belastung infolge des Propellerstrahls und die Bemessung der Schutzmaßnahmen ist Gegenstand des darauffolgenden Abschnittes. Dargestellt wird der Unterschied zwischen den wirkenden Kräften auf einzelne Steine und auf Steine im Verbund. Die Ansätze zur Ermittlung der erforderlichen Steingröße und der Tiefe eines Kolks infolge der Belastung durch den Propellerstrahl werden aufgezeigt und erläutert. Die Bemessung der Steingrößen an der Böschung und der Sohle ist maßgeblich von der maximal auftretenden Strömungsgeschwindigkeit abhängig.

Die Ermittlung der Geschwindigkeiten im Propellerstrahl erfolgt über die induzierte Anfangsgeschwindigkeit. Diese ist endscheidend vom Propellerdurchmesser und der Leistung bzw. den Umdrehungen der Maschine abhängig. Der Ansatz des Propellerdurchmessers ist anhand der eindeutig definierten Abmessungen unproblematisch. Für den Ansatz der Leistung ist maßgebend, mit welcher tatsächlichen Leistung (in [%] von der maximalen) sich ein Schiff während eines Manövers im Hafen fortbewegt. Endsprechendes gilt für den Ansatz der Umdrehungen.

Zwischen den vorhandenen Leistungs- und Umdrehungsansätzen nach den EAU [2004], der PIANC [1997] sowie der PIANC [2008] bestehen Abweichungen. Ziel dieser Diplomarbeit ist es, die unterschiedlichen Ansätze zu überprüfen und zu bewerten. Hierfür wird eine Analyse von sogenannten *PilotCards* durchgeführt, sodass den theoretischen Ansätzen Ergebnisse aus realen Daten gegenübergestellt werden können.

Im Anschluss wird ein Berechnungsbeispiel durchgeführt. Mit den Eingangsdaten der *Emma Mærsk*, eines der derzeit weltgrößten Containerschiffe, werden die Geschwindigkeiten im Propellerstrahl nach den unterschiedlichen Ansätzen der Umdrehungen und der Leistungen berechnet. Es erfolgt die Ermittlung der erforderlichen Steingrößen und der Kolktiefen, wobei der Einfluss der unterschiedlichen Leistungs- und Umdrehungsansätze verdeutlicht wird.

Die Diplomarbeit schließt mit einer ausführlichen Zusammenfassung, in der die Ergebnisse dargestellt und kritisch bewertet werden. Es erfolgt ein Ausblick auf notwendige und mögliche Bearbeitungsschritte.

2 Allgemeines zum Hafenbau

2.1 Kaimauern

Eine Kaimauer ist ein parallel zum Ufer verlaufendes Bauwerk. Die Bauweise richtet sich nach der Belastung, den Baugrundverhältnissen, dem Geländesprung, dem Typ und der Größe der anlegenden Schiffe, den Verkehrsund Umschlagseinrichtungen, der Verfügbarkeit von Baumaterialien, der Bauzeit und den Baukosten.

An Container- und Stückguthafen kommen Kaimauern in senkrechter Bauweise zum Einsatz. Diese Bauweise ermöglicht einen wirtschaftlichen Kran- und Containerbrückeneinsatz. Eine teilgeböschte Ausführung der Kaimauer ist zwar die wirtschaftlichste Bauweise, erschwert aber die An- und Ablegemanöver und verringert so die Umschlagsleistung der Krane. Im Folgenden werden daher nur senkrechte Bauweisen betrachtet.

Die senkrechten Kaimauerkonstruktionen lassen sich nach BRINKMANN [2005] in folgende Bauweisen einteilen:

- 1. Schwergewichtskonstruktion,
- 2. Spundwandkonstruktion und
- 3. Pfahlkonstruktion.

In Abbildung 2.1 und 2.2 werden zwei unterschiedlichen Möglichkeiten, eine Schwergewichtskonstruktion auszubilden, aufgezeigt.

Abb. 2.1: Offene Senkkästen [BRINKMANN, 2005]

Abb. 2.2: Blockbauweise [BRINKMANN, 2005]

Die Schwergewichtskonstruktion basiert auf dem Konzept, dass die einwirkenden Kräfte durch das Eigengewicht der Mauer und der wirkenden Reibung entlang der Sohle aufgenommen werden. Der Einsatz erfolgt bevorzugt dort, wo die im Folgenden erläuterten Pfahl- und Spundwandkonstruktionen ausscheiden. Aufgrund des hohen Gewichts ist ein tragfähiger Untergrund erforderlich.

Spundwände finden als Ufereinfassung im Wasserbau häufig eine sehr zweckmäßige und ökonomische Verwendung (vgl. Abb. 2.3 und 2.4). Die Konstruktion besteht aus Stahlprofilen, die über Schlösser miteinander verbunden werden. Ihre Standsicherheit wird durch Verankerungen sowie der Einbindung in den Baugrund gewährleistet [BRINKMANN, 2005].

Bei schlechten Baugrundverhältnissen, großen Geländesprüngen oder großen Lasten eignen sich Einzelpfähle oder Pfahlgruppen als zweckmäßige und wirtschaftliche Art der Kaimauerkonstruktion (vgl. Abb. 2.5 und 2.6). Die Pfahlkonstruktion gehört zu den Tiefgründungen und wird über eine Rostplatte zu einer Gründungseinheit verbunden [BRINKMANN, 2005].

Abb. 2.5: Pfahlkonstruktionen Abb. 2.6: mit wasserseitiger Spundwand [BRINKMANN, 2005]

Pfahlkonstruktionen mit landseitiger Spundwand [BRINKMANN, 2005]

2.2 **Böschungen und Sohlen**

Sowohl auf Böschungen als auch im Bereich der Sohlen werden Steinschüttungen als Deckwerk verwendet. Früher wurden durchweg lose und heute bei hoher Belastung auch gebundene Steinschüttungen eingebaut.

Auf das Deckwerk wirken unterschiedliche Einwirkungen einzeln oder in Kombination, sodass das Deckwerk den folgenden Anforderungen genügen muss:

- schadlose Umwandlung der Wellenenergie
- Schutz gegen Erosion infolge Strömungen •
- Schutz gegen Schraubenstrahl
- Verhinderung von Böschungsbrüchen
- Standsicherheit bei Absunk
- mechanischer Schutz des Gewässerbetts und ggf. einer Dichtung (gegen z. B. Ankerwurf)
- Schutz gegen chemische und biologische Einflüsse
- Schutz gegen Witterungseinflüsse
- ggf. schadloses Abführen von Grundwasser.

Die Bemessung ist letztlich von den speziellen Randbedingungen vor Ort sowie der Intensität, der Häufigkeit und der Dauer der Beanspruchung abhängig.

In den folgenden Kapiteln werden die Komponenten des Deckwerks, die Bauweisen sowie die Schichtdicken aufgezeigt.

2.3 Deckwerkskomponenten

Das Deckwerk setzt sich aus den folgenden Bestandteilen zusammen:

- Wasserbausteinen
- Verguss
- Filterlagen
- Trennlagen und
- Dichtungssystemen.

2.3.1 Wasserbausteine

Die Wasserbausteine sind nach DIN EN 13383 [2009] in verschiedene Standard-Steinklassen mit unterschiedlicher Widerstandsfähigkeit gegen hydraulische Einwirkungen eingeteilt. Kleinere Wasserbausteine werden über den Siebdurchmesser *D* (Kantenlänge des Quadratlochsiebes) definiert und als $CP_{x/y}$ Klasse bezeichnet (Coarse Particle, x untere Klassengrenze [mm], y obere Klassengrenze [mm]). Die größeren Klassen werden über ihr Gewicht *G* definiert und entweder in die Leichtgewichtsklasse, mit der Bezeichnung $LM_{x/y}$ (Light Mass, x untere Klassengrenze [kg], y obere Klassengrenze [kg]) oder in die Schwergewichtsklasse HM_{x/y} (Heavy Mass untere Klassengrenze [kg], y obere Klassengrenze [kg]) einsortiert [MAR, 2008].

Nach dem GBB [2004] wird für eine Einteilung der Wert herangezogen, der von 50 % der Steinfraktionen unterschritten wird. Der Wert bezieht sich bei Gewichtsklassen (G_{50}) auf das Gewicht und bei Größenklassen (D_{50}) auf den Durchmesser.

Der erforderliche G_{50} - bzw. D_{50} - Wert muss eingehalten sein und zusätzlich muss die Summenlinie nach DIN EN 13383 [2009], wie in Abbildung 2.7 dargestellt, innerhalb bestimmter Grenzen liegen [MAR, 2008].

In Tabelle 2.1 werden die Werte für die Standard-Steinklassen loser Deckschichten aufgezeigt. Die Regelbauweisen unterscheiden vier verschiedene Rohdichten des Gesteins von $\rho_S = 2.300 \text{ kg/m}^3$, $\rho_S = 2.650 \text{ kg/m}^3$, $\rho_S = 3.000 \text{ kg/m}^3$ und $\rho_S = 3.600 \text{ kg/m}^3$.

Abb. 2.7: Definition der Bemessungswerte G₅₀ beispielhaft für eine LMB_{5/40} Klasse [MAR, 2008]

Tab. 2.1:50 % - Werte für Standard Steinklassen loser Deckschichten[MAR, 2008]

Steinklasse	50% - Wert
CP _{90/250}	$D_{50} = 150 \text{ mm}$
LMB _{5/40}	$G_{50} = 14 \text{ kg}$
LMB _{10/60}	$G_{50} = 25 \text{ kg}$

Abb. 2.8:Zusammenhang zwischen Durchmesser D und nominalenDurchmesser D_n [KAYSER, 2006]

Die nominale Steingröße D_n ist, wie in Abbildung 2.8 dargestellt, die Kantenlänge eines Würfels mit demselben Gewicht *G* und berechnet sich zu:

$$D_n = \left(\frac{G}{\rho_s}\right)^{\frac{1}{3}}$$
Gl. 5-1

mit

D_n	nominale Steingröße	[m]
G	Gewicht des Steins	[kg]
$ ho_S$	Dichte der Wasserbausteine	[kg/m³].

2.3.2 Verguss, Filter-, Trennlagen und Dichtungssysteme

Das [MAR, 2008] empfiehlt für den Einsatz von Vergussmittel dichte, hydraulisch gebundene Vergussstoffe. Die Hinweise für die empfohlenen Vergussstoffmengen mit den Anforderungen an die Ausgangsmaterialien, die erforderlichen Prüfungen und den Einbau enthält das *Merkblatt zur Anwendung von hydraulisch- und bitumengebundenen Stoffen zum Verguss von Wasserbausteinen an Wasserstraßen* [MAV, 2008].

Für den Einbau von Filter- und Trennlagen verweist das [MAR, 2008] auf das Merkblatt zur Anwendung von geotextilen Filtern an Wasserstraßen [MAG, 1993] sowie das Merkblatt zur Anwendung von Kornfiltern an Wasserstraßen [MAK, 1989].

Die Dichtungssysteme der Regelbauweisen sind ausschließlich Oberflächenabdichtungen, sodass im [MAR, 2008] auf die *Empfehlung zur Anwendung von Oberflächenabdichtungen* [EAO, 2002] verwiesen wird.

2.4 Hohlraumgehalt

Das Gewicht einer Schüttung wird stark vom Hohlraumgehalt bestimmt, der im Wesentlichen vom Einbauverfahren abhängig ist. Tabelle 2.2 zeigt den Hohlraumgehalt von Deckschichten aus Wasserbausteinen in Abhängigkeit des Einbauverfahrens [MAR, 2008].

Tab. 2.2:Hohlraumgehalt von Deckschichten in Abhängigkeit desEinbauverfahrens [MAR, 2008]

Lagerungs-	Hohlraumgehalt n	Einbauverfahren	
dichte	[%]		
locker	50–55	Bei Verklappen unter Wasser	
mitteldicht	45	Bei Schüttung im Trockenen bzw. bei Einbau durch Greifer/ Bagger unmittelbar auf dem Planum	
dicht	30–40	Bei Nacharbeiten von Hand bzw. Andrücken mit dem Einbaugerät	

2.5 Bauweisen der Deckschicht

Nach [MAR, 2008] ist es möglich, die Deckschichten auf drei unterschiedliche Arten einzubauen. Diese werden in den nachfolgenden Kapiteln beschrieben und erläutert.

2.5.1 Durchlässige Deckschicht aus losen

Wasserbausteinen

Abb. 2.9: Deckschicht aus losen Wasserbausteinen [MAR, 2008]

Wie in Abbildung 2.9 gezeigt besteht diese Bauweise aus geschütteten, losen Wasserbausteinen und kann auf einem geotextilen Filter oder Kornfilter angewendet werden. Die Vorteile liegen in der großen Anpassungsfähigkeit bei Untergrundverformungen sowie der Widerstandsfähigkeit gegenüber Schiffsanfahrung.

Die Größe der Einzelsteine und die Einbaudicke der Deckschicht sind maßgeblich für die Lagestabilität verantwortlich. Diese Faktoren werden von der Rohdichte und dem Hohlraumgehalt der Steinschüttung bestimmt. Bei hohen Strömungsbelastungen, wie z. B. im Manövrierbereich ist diese Bauweise nicht ausreichend lagestabil [MAR, 2008].

2.5.2 Durchlässige Deckschicht aus teilvergossenen Wasserbausteinen

Abb. 2.10: Deckschicht aus teilvergossenen Wasserbausteinen [MAR, 2008]

Eine durchlässige Deckschicht aus teilvergossenen Wasserbausteinen, wie sie in Abbildung 2.10 dargestellt ist, besteht aus geschütteten Wasserbausteinen und einem Teilverguss. Die Anwendung wie die Deckschicht aus Wasserbausteinen ohne Teilverguss, auf einem dichten geotextilen Filter oder Kornfilter ist ebenso möglich. Die Flexibilität ist eingeschränkt und von der Vergussmenge abhängig. Eine Beschädigung infolge Schiffsanfahrung ist nicht auszuschließen. Lokale Fehlstellen sollen zeitnah behoben werden, um eine Ausbreitung zu verhindern [MAR, 2008].

2.5.3 Durchlässige Deckschicht aus vollvergossenen Wasserbausteinen

Abb. 2.11: Deckschicht aus vollvergossenen Wasserbausteinen [MAR, 2008]

Die Bauweise der Deckschicht aus vollvergossenen Wasserbausteinen besteht aus geschütteten Wasserbausteinen und einem dichten, hydraulisch gebundenen Vergussstoff (vgl. Abb. 2.11). Der Einbau darf nur auf einer entsprechenden geotextilen Trennlage erfolgen. Eine Flexibilität der Deckschicht ist nicht gegeben und die Beschädigung durch Schiffanfahrung möglich. Fehlstellen sind zu beseitigen um die Dichtigkeit wieder herzustellen [MAR, 2008].

Insbesondere bei hoher hydraulischer Belastung oder unter beengten Platzverhältnissen kann es erforderlich sein, ein vergossenes Deckwerk herzustellen. Das Steingerüst dieses Deckwerktyps muss hinsichtlich des Porenraums optimiert sein. Zum einen dürfen die Poren nicht zu groß sein, damit der Mörtel nicht durch das Deckwerk "durchfällt". Zum anderen dürfen die Poren nicht zu klein werden, da dann der Mörtel unter diesen Umständen nicht im erforderlichen Umfang in den Porenraum eindringen kann. Die Steinklasse CP90/250 wird für die vergossene Bauweise empfohlen.

Roh- dichte [kg/m³]	WBSt- Klasse	Empfohlene Deckschichtdicken d _D [m] bei Fußeinbindung (Einbindetiefe: 1,50 m)					
		Böschung				Sohle	
		Geo nacł	otextil n MAG		Kornfilter nach MAK	Geotextil nach MAG	Kornfilter nach MAK
		B1, B2, B5*	B3	B 4	alle Böden	alle Böden	alle Böden
2300	LMB _{10/60}	0,70	0,85	0,95	0,70	0,70	0,70
2650	LMB _{5/40}	0,60	0,70	0,80	0,60	0,60	0,60
3000	LMB _{5/40}	0,55	0,60	0,70	0,55	0,60	0,55
3600	CP _{90/250}	0,50	0,50	0,60	0,50	0,60	0,50

2.6 Deckschichtdicken

*B5 einschließlich Weichdichtungen

Abb. 2.12: Empfohlene Deckschichtdicken (lose Wasserbausteine) für Böschung und Sohle unter Beachtung der Böden [MAR, 2008]

Aus den verschiedenen Steinklassen ergeben sich, abgeleitet aus den Steinlängen, die in Abbildung 2.12 aufgeführten Mindestdicken der Deckschichten d_D für lose Wasserbausteine. Hierbei wurde auf die erreichbare Einbaugenauigkeit von 5 cm gerundet. Die vorliegenden Werte sind als Mindestdicken anzusehen, die sich aus der Erfordernis eines stabilen Steingerüsts ergeben.

Die Kriterien nach GBB [2004] oder [MAR, 2008] zur Festlegung der Deckwerksdicke hinsichtlich der Mindestdicke sind weiterhin zusätzlich zu beachten [KAYSER, 2006].

3 Schiffsbedingte Strahlerzeugung

3.1 Propeller

Der Einsatz von Propellern zum Antrieb von Schiffen ist allgemein üblich. Über eine Achse wird die vom Motor generierte Drehbewegung zur Nabe des Propellers übertragen und der Propeller auf diese Weise in Bewegung gesetzt. Um die Nabe sind die Propellerblätter symmetrisch angeordnet. Der Querschnitt gleicht einem Flügel, um Kavitation zu vermeiden und den in Anlehnung an die Bernoulli Gleichung erforderlichen Vorwärtsschub zu ermöglichen. Das Prinzip ist mit der Funktionsweise eines Flugzeugsflügels vergleichbar. Dadurch, dass die obere Seite des Flügels länger ist als die untere, wird eine auftreibende Kraft hergestellt. Bei einem Propellerblatt ist die Vorderseite länger, sodass auf dieser Seite weniger hydrodynamischer Druck herrscht, als auf der Rückseite. Hieraus ergibt sich der Schub nach vorne.

Fixed Pitch Popeller (FPP)

Bei einem *Fixed Pitch Popeller (FPP)* sind die Propellerblätter fest mit der Nabe verbunden und der Anstellwinkel nicht regulierbar. Aus diesem Grund ist diese Propellerart besonders betriebssicher, robust sowie effizient und für Schiffe geeignet, die lange Strecken fahren und Ozeane durchqueren. Bedingung für den Einbau eines derartigen Propellers ist, dass die gute Anpassung an den Schiffsrumpf und den Motor. In Abbildung 3.2 ist ein *FPP* dargestellt.

Controllable Pitch Popeller (CPP)

Bei den *Controllable Pitch Popellern (CPPs)* ist es möglich, den Anstellwinkel der Propellerblätter zu variieren. Der Querschnitt des Blattes verläuft wie in Abbildung 3.3 aufgezeigt, asymmetrisch. Wenngleich der Propller für das Manöver *Full ahead (Volle Kraft vorraus)* besonders leistungsstark konstruiert wurde, erzielt er ebenfalls beim Rückwärtsfahren sehr gute Ergebnisse. Der größte Vorteil bezieht sich auf das Manövrieren des Schiffes im Hafen. Die Leistung des Motors bleibt erhalten und die Geschwindigkeit des Schiffes kann ausschließlich über den Anstellwinkel der Propellerblätter variiert werden.

Aus diesem Grund sind *CPP*s ideal für Schiffe, die mit einer hohen Frequenz in Häfen ein- und auslaufen [WÄRTSILÄ, 2010]. Es ist aber ebenso möglich, sie in nahezu allen Schiffstypen einzusetzen, wobei das Leistungsspektrum von 600 KW bis 30.000 KW reicht. Die CPPs haben einen Durchmesser von ca. 1,5 bis 8,0 m [SCHOTTEL, 2010].

Ummantelte Propeller

Ummantelte Propeller erzielen eine höhere Leistung bei geringen Geschwindigkeiten. Allerdings wird die Effektivität bei hohen Geschwindigkeiten verringert. Für Schlepper und andere Schiffe, die eine große Ziehkraft benötigen, ist der Einsatz derartiger Propeller ideal.

Eine besondere Form der ummantelten Propeller sind die Bugstrahlruder (Querstrahlruder). Der in Abbildung 3.1 a dargestellte, rohrförmige Durchgang durch die gesamte Schiffsbreite im vorderen Zehntel eines Schiffes, wird als Bugstrahlruder bezeichnet. Das Bugstrahlruder besteht aus einem Propeller mit horizontaler Achse, der als Impeller in einem Rohr arbeitet und zur Ausführung von Manövern aus dem Stand eingesetzt wird (vgl. Abb. 3.1 b). Der Durchmesser beträgt in der Regel 1,5 bis 2,5 m. Die Leistung des Bugstrahlers entspricht in etwa 7 bis 13 % der Leistung des Hauptmotors [PIANC, 1997]. Die Drehrichtung ist veränderbar und ermöglicht auf diese Weise das Schiff nach Back- oder Steuerbord zu bewegen. Besonders bei guten Wetterverhältnissen kann so teilweise auf den Einsatz von Schleppern verzichtet werden. Aufgrund von hydrodynamischen Effekten ist der Einsatz des Bugstrahlruders nur bis zu einer Fahrtgeschwindigkeit von fünf Knoten möglich und bei höheren Geschwindigkeiten fast vollkommen wirkungslos.

Abb. 3.1 a/b: Bugstrahlruder [SCHOTTEL, 2010]

Abb. 3.2: Fixed Pitch Propeller (FPP) [KAMOME, 2010]

Abb. 3.3: Controllable Pitch Propeller (CPP) [SCHOTTEL, 2010]

3.2 Propellerstrahl

In Häfen legen die großen Containerschiffe heutzutage vermehrt mit eigener Kraft an der Kaimauer ab- bzw. an. Aufgrund dieser Manöver, die unter Einsatz der Heckschraube und des Bugstrahlruders durchgeführt werden, kommt es zur Ausbildung von hochturbulenten Strahlerscheinungen. Diese werden im Folgenden erläutert.

In einem Propellerstrahl lassen sich drei typische Zonen der Strahlentwicklung unterscheiden:

- Strahlinduktion
- Strahlausbreitung und
- Strahlerosion.

In Abbildung 3.4 werden diese Zonen anhand der Heckschraube dargestellt.

Abb. 3.4: Zonen der Strahlentwicklung [Schmidt, 1998]

Die Strahlinduktion erfolgt über die Rotation des Propellers mit dem Durchmesser D und der Höhe h_p (Abstand zwischen Propellerachse und Sohle). Diese Parameter sind in Abbildung 3.4 aufgezeigt. Aufgrund der Umdrehungen des Propellers wird der Strahl induziert, sodass ein Impuls entsteht, der über seine gesamte Lauflänge erhalten bleibt. Die Wasserpartikel werden beschleunigt und

erhalten auf diese Weise eine Geschwindigkeit in axialer, radialer und tangentialer Richtung.

Durch intensiv turbulente Austausch- und Vermischungsprozesse, mit dem umliegenden Wasser weitet sich der Strahl über seine Länge auf. Der Strahldurchmesser vergrößert sich und die Zentralgeschwindigkeit (Achsgeschwindigkeit) $v_{x,max}$ nimmt mit zunehmendem Abstand zum Propeller ab.

Sobald die Strahlausbreitung durch beispielsweise die Sohle behindert wird, erfolgt die Strahlerosion.

3.2.1 Induzierte Anfangsgeschwindigkeit

Die maßgebende Größe im Bereich der Strahlinduktion ist die induzierte Anfangsgeschwindigkeit. Sie bestimmt die Geschwindigkeiten im gesamten Propellerstrahl. Die Belastung auf die Hafenstrukturen (Kaimauern, Böschungen und Sohlen) lassen sich aus dieser Größe ermitteln.

In der einfachen Strahlentheorie des Propellers wird der Propeller als idealer Druckbeschleuniger angenommen (vgl. Abb. 3.5). Für den erzeugten Schub T, unter Anwendung der Bernoulli'schen Gleichung, ergibt sich nach RÖMISCH [1993] für den Bereich vor und hinter einem freien Propeller:

$$T = \rho_W * v_0 * \frac{\pi * D^2}{4} * \left(v_A + \frac{v_0}{2} \right)$$
Gl. 3-1

mit

Т	Schubkraft hinter dem Propeller	[N]
$ ho_W$	Dichte des Wassers	[kg/m³]
v_0	erzeugte Strahlgeschwindigkeit hinter dem Propeller	[m/s]
	(= induzierte Anfangsgeschwindigkeit)	
D	Propellerdurchmesser	[m]
v_A	Anströmungsgeschwindigkeit des Propellers	[m/s].
Weiterhin gilt nach der schiffbaulichen Propellerbemessung:

$$T = \rho_W * n^2 * D^4 * k_T$$
 Gl. 3-2

mit

n Umdrehungen des Propellers [U/min] k_T Schubbeiwert des Propellers, = 0.25 bis 0.5 [-].

$$T_{I}$$
 = 0,25 bis 0,5 [-].

Abbildung 3.5 zeigt den Propeller als idealen Druckbeschleuniger mit der Anströmungsgeschwindigkeit v_A . Dargestellt wird die Veränderung der Geschwindigkeit von v_A zu $v_A + v_0$ beim Durchströmen durch den Propeller.

Abb. 3.5: Der Propeller als idealer Druckbeschleuniger

Durch das Gleichsetzen der Gleichungen 3-1 und 3-2 ergibt sich für den Manöverzustand $v_A = 0$ (Schiff fährt aus dem Stand an) die erzeugte Strahlgeschwindigkeit hinter einem Propeller, die als induzierte Anfangsgeschwindigkeit v_0 bezeichnet wird:

$$v_0 = 1, 6 * n * D * \sqrt{k_T}.$$
 Gl. 3-3

Für einen mittleren Schubbeiwert von $k_T = 0.35$ folgt nach den EAU [2004] für v_0 :

$$v_0 = 0.95 * n * D.$$
 Gl. 3-4

In Abhängigkeit der Propellerleistung gilt nach den EAU [2004] der folgende Ansatz:

$$v_0 = C_P * \left(\frac{P}{\rho_W * D^2}\right)^{\frac{1}{3}}$$
 GI. 3-5

mit

C_P Faktor für Rohrgeometrie und den Austrittsquerschnitt [-]

Es liegen unterschiedliche, aus Modellversuchen entwickelte, Ansätze zur Bestimmung von C_P vor. Nach RÖMISCH [1993] gilt $C_P = 1,48$ für einen freien Propeller bzw. $C_P = 1,17$ für einen ummantelten Propeller. In NIELSON [2005] wird C_P mit einem mittleren Wert von 1,37 angenommen.

Unterscheidung freier und ummantelter Propeller

Nach Gleichung 3-5 ist es möglich über den Faktor C_P zwischen einem freien und einem ummantelten Propeller zu unterscheiden. Im GBB [2004] geschieht dies, anhand des Faktors C_P und der Berechnung des Schubbeiwertes.

Für einen freien Propeller berechnet sich v_0 nach dem GBB [2004], analog zu Gleichung 3-3 mit einem zusätzlichen Faktor f_N , welcher die einzusetzende Propellerdrehzahl berücksichtigt, zu:

$$v_0 = 1, 6 * f_N * n * D * \sqrt{k_T}$$
 GI. 3-6

mit

$$f_N$$
 Faktor für die einsetzbare Propellerdrehzahl [-].

Die Begrenzung des Schubbeiwertes k_T (für den Bereich $0 < P_S/D < 1,4$) erfolgt über den folgenden Ansatz:

$$k_T = 0,55 * \frac{P_S}{D}$$
 GI. 3-7

mit

P_S	Konstruktionssteigung	[m]
$\frac{P_S}{D}$	Konstruktionssteigungsverhältnis	[-].

Analog zu Gleichung 3-5 berechnet sich v_0 , bei Kenntnis der Leistung *P* zu:

$$v_0 = C_P * \left(\frac{P * f_P}{\rho_W * D^2}\right)^{\frac{1}{3}}$$
 GI. 3-8

mit

$$C_P$$
 = 1,5 (für einen freien Propeller) [-]

$$f_P$$
 Faktor zur einsetzbaren Maschinenleistung [-].

Für einen ummantelten Propeller gilt unter Berücksichtigung der Leistung *P* die Gleichung 3-8 mit $C_P = 1,2$ bis 1,4. Bei Kenntnis der Umdrehungen *n* gilt Gleichung 3-6, unter Berücksichtigung eines Faktors von $\sqrt{0,5}$ und dem Schubbeiwert nach Gleichung 3-10, sodass für v_0 folgt:

$$v_0 = 1, 6 * \sqrt{0.5} * f_N * n_{Nenn} * D * \sqrt{k_{T,DP}}$$
 Gl. 3-9

mit

$$k_{T,DP}$$
 Schubbeiwert des Propellers [-].

Als obere Grenze von $k_{T,DP}$ kann für $0 < P_S < 1,8$ die folgende Abschätzung nach GBB [2004] erfolgen:

$$k_{T,DP} = 0.67 * \frac{P_S}{D}$$
 GI. 3-10

Einfluss der Schiffsgeschwindigkeit

Bewegt sich das Schiff mit einer bestimmten Geschwindigkeit, wirkt auf den Propeller, wie in Abbildung 3.5 dargestellt, die Geschwindigkeit v_A . Die induzierte Anfangsgeschwindigkeit v_0 verändert sich zu $v_{0,I}$ [GBB, 2004].

Bei freien Propellern tritt, bei geringer Schiffsgeschwindigkeit v_A , eine Absenkung von $v_{0,J}$ auf. Erhöht sich die Geschwindigkeit des Schiffes, steigt auch die Geschwindigkeit $v_{0,J}$, sodass für Konstruktionssteigungsverhältnisse $\frac{P_S}{D}$ im praxisrelevanten Bereich $v_{0,J} = v_0$ gesetzt wird. Das Ansteigen der Geschwindigkeit ist von dem Verhältnis $\frac{P_S}{D}$ abhängig.

Durch Ermittlung des Schubbeiwertes $K_{T,J}$, ist es möglich die obere Grenze von $v_{0,J}$ genauer abzuschätzen. Mit

$$K_{T,J} = 0.55 * \frac{P_S}{D} - 0.46 * J$$
 Gl. 3-11

berechnet sich $v_{0,J}$ bei einem freien Propellers mit beliebiger Schiffsgeschwindigkeit zu:

$$v_{0J} = \frac{\sqrt{(J^2 + 2.55 * k_{TJ})}}{\sqrt{1.40 * \frac{P_S}{D}}} * v_0.$$
 GI. 3-12

Bei ummantelten Propellern wird für alle Schiffsgeschwindigkeiten $v_{0,J} = v_0$ angenommen. Es gilt unter der Abschätzung von $K_{T,DPJ}$ mit:

$$K_{T,DPJ} = 0.67 * \frac{P_S}{D} - 0.77 * J$$
 Gl. 3-13

für $v_{0,I}$ bei beliebiger Schiffsgeschwindigkeit als obere Grenze für :

$$v_{0,J} = \frac{\sqrt{(J^2 + 5,10 * K_{T,DPJ})}}{\sqrt{3,41 * \frac{P_S}{D}}} * v_0$$
Gl. 3-14

mit:

Propellerfortschrittsgrad =
$$\frac{v_A}{n*D}$$
 [-].

J

Internationaler Ansatz der induzierten Anfangsgeschwindigkeit

Der internationale Ansatz zur Berechnung der induzierten Anfangsgeschwindigkeit berücksichtigt, an Stelle des realen Durchmessers D, den sogenannten eingeschnürten Durchmesser D_0 . Nach BLAAUW und VAN DE KAA [1978] ergibt sich der Ansatz nach Gleichung 3-5 wie folgt:

$$v_0 = 1,15 * \left(\frac{P}{\rho_w * D_0^2}\right)^{\frac{1}{3}}$$
. Gl. 3-15

Der Maximalwert von v_0 stellt sich bei Propellern ohne Düse im Abstand D/2hinter der Propellerebene am Ort der maximalen Strahlkontraktion ein (vgl. Abb. 3.6). Der Strahlquerschnitt wird an dieser Stelle als eingeschnürter Querschnitt bezeichnet und erreicht einen eingeschnürten Durchmesser von:

$$D_0 \ge \frac{D}{\sqrt{2}}.$$
 Gl. 3-16

Abb. 3.6: Darstellung des eingeschnürten Strahlquerschnitts *D*₀

3.2.2 Geschwindigkeitsverteilung im Strahl

Die zu Beginn dieses Kapitels genannten Zonen der Strahlentwicklung (Strahlinduktion, Strahlausbreitung und Strahlerosion) werden im Hinblick auf die Geschwindigkeitsverteilung im Strahl erläutert. Die Theorie von ALBERTSON ET AL. [1948] in BLAAUW und VAN DE KAA [1978] dient der Berechnung der Geschwindigkeit v_x an jeder beliebigen Stelle im Strahl.

Abbildung 3.7 zeigt die Geschwindigkeitsverteilungen im Strahl während der Strahlinduktion und der Strahlausbreitung.

Abb. 3.7: Geschwindigkeitsverteilung im Strahl nach der Theorie von ALBERTSON ET AL. [1948], in [SCHMIDT, 1998]

Strahlinduktion

Während der Strahlinduktion entwickelt sich der Strahl, ohne dass der äußere Teil des Propellers entlang der x-Achse einen Einfluss nimmt. In dieser sogenannten Kernzone mit $x < x_0$, wie in Abbildung 3.7 dargestellt, ist die maximale Geschwindigkeit entlang der x-Achse konstant und berechnet sich nach BLAAUW und VAN DE KAA [1978] zu:

$$\frac{v_{x,max}}{v_0} = 1.$$
 Gl. 3-17

Die Größe dieser Zone wird anhand von Untersuchungen von RÖMISCH [1975] in SCHOKKING [2002] für den Heckpropeller mit $x_0/D = 2,6$ ermittelt.

Die Berechnung der Geschwindigkeit v_x an einem beliebigen Punkt im Bereich der ungestörten Strahlausbreitung erfolgt nach BLAAUW und VAN DE KAA [1978] als:

$$\frac{v_x}{v_0} = e^{\left[-\frac{(r+cx-D_0/r)^2}{(2*(cx)^2)}\right]}$$
Gl. 3-18

mit

- v_x Geschwindigkeit an einem beliebiegem Punkt im Strahl [m/s]
- *D*₀ eingeschnürter Durchmesser nach Gl. 3-16 [m]
- x Abstand vom Propeller [m]
- r radialer Abstand zur x-Achse (r > 0), [m]
 - für r = 0 gilt Gl. 3-17
- *c* Konstante der Geschwindigkeitsfunktion [-].

= 0,19 (für einen freien Propeller)

= 0,17 (für einen ummantelten Propeller)

Strahlausbreitung

Für den Bereich der Strahlausbreitung mit $x > x_0$, gilt nach BLAAUW und VAN DE KAA [1978] für die maximale Geschwindigkeit entlang der x-Achse:

$$\frac{v_{x,max}}{v_0} = \frac{1}{2*c_1} * \left(\frac{x}{D_0}\right)^{-1}.$$
 GI. 3-19

Die radiale Geschwindigkeit v_x an jedem beliebigen Punkt im Strahl kann nach BLAAUW und VAN DE KAA [1978] mithilfe der Gauß-Verteilung beschrieben werden:

$$\frac{v_x}{v_{x,max}} = e^{\left[\frac{1}{r*c_2^2} * \frac{r^2}{x^2}\right]}$$
Gl. 3-20

mit

v_{max}	maximale Geschwindigkeit nach Gl. 2-17	
x	Abstand vom Propeller	[m]
r	radialer Abstand zur x-Achse	[m]
<i>c</i> ₁ , <i>c</i> ₂	Konstanten	[-].

Für die Konstanten c_1 und c_2 liegen verschiedene empirische Ansätze vor. Für die ermittelten Werte von FÜHRER, ET AL. [1977] in SCHOKKING [2002] folgt:

für $c_1 = 0,192$

$$\frac{v_{x,max}}{v_0} = 2.6 * \left(\frac{x}{D}\right)^{-1}$$
 GI. 3-21

und für $c_2 = 0,15$

$$\frac{v_x}{v_{x,max}} = e^{\left[-22,2*\frac{r^2}{x^2}\right]}.$$
 GI. 3-22

Hinweis: In Gleichung 3-21 ist der reale Durchmesser *D* einzusetzen, obwohl diese sich aus Gleichung 3-19 ableitet (Umrechnung nach Gl. 3-16: $D = \sqrt{2} * D_0$).

Strahlerosion

Wird die Strahlausbreitung durch den Wasserspiegel, die Sohle oder einer seitlichen Begrenzung behindert, kommt es zur Strahlerosion. In diesem Bereich berechnet sich $v_{x,max}$ zu:

$$\frac{v_{x,max}}{v_0} = A * \left(\frac{x}{D}\right)^{-a}.$$
 Gl. 3-23

Der Parameter *A* berücksichtigt die Anordnung des Propellers und des Ruders. Für einen Heckpropeller ohne Zentralruder gilt nach Römisch [1993]:

$$A = 1,88 * e^{\left(-0.092 * \frac{h_P}{D}\right)}.$$
 GI. 3-24

mit

Für einen Heckpropeller mit einem Zentralruder berechnet sich *A* nach [RÖMISCH, 1993] zu:

$$A = 1,88 * e^{\left(-0,161 * \frac{h_p}{D}\right)}.$$
 Gl. 3-25

Der Parameter *a*ist von den, im Kapitel 3.2.3 dargestellten, Standardsituationen der Strahlausbreitung abhängig und liegt zwischen a = 0,6 und a = 1,62 [GBB, 2004]. In SCHMIDT [1998] wird zwischen a = 0,6 für den Fall der seitlichen Strahlbegrenzung durch Sohle und Wasserspielgel und a = 0,3 für die seitliche Strahlbegrenzung durch Sohle, Wasserspiegel und Kaiwand unterschieden.

Aus diesen Annahmen ergibt sich folgender Ansatz für die maximale Sohlgeschwindigkeit $v_{max,So}$:

$$\frac{v_{max,So}}{v_0} = E * \left(\frac{h_P}{D}\right)^{-1}.$$
 Gl. 3-26

Unter Verwendung von Gleichung 3-4 zur Ermittlung der induzierten Anfangsgeschwindigkeit ergibt sich:

$$v_{max,So} = 0.95 * n * E * \frac{D^2}{h_P}$$
 GI. 3-27

mit

E = 0,71 (für ein Seeschiff mit Zentralruder) [-]= 0,42 (für ein Seeschiff ohne Zentralruder) $= 0,25 \text{ (für ein Binnenschiff mit Tunnelheck}^1 \text{ und Zwillingsruder)}.$

¹ Das Heck von Binnenschiffen, deren Unterwasserteil sich tunnelartig wölbt, wird als Tunnelheck bezeichnet

3.2.3 Standardsituationen der Strahlausbreitung

Wie im vorherigen Kapitel erläutert, wird im Bereich der Strahlerosion, die Strahlausbreitung durch den Wasserspiegel, die Sohle oder einer seitlichen Begrenzung behindert. Im GBB [2004] werden die folgenden vier Standardsituationen der Strahlausbreitung unterschieden:

- 1. Strahlausbreitung ohne seitliche Begrenzung und ohne Strahlteilung
- 2. Strahlausbreitung ohne seitliche Begrenzung und mit Strahlteilung
- 3. Strahlausbreitung mit seitlicher Begrenzung und mit Strahlteilung und
- Strahlausbreitung mit Begrenzung durch Prallwand und ohne Strahlteilung.

Die wesentlichen Randbedingungen der Strahlgeometrie sind demnach die Ruderanordnung des Schiffes und die Begrenzung durch die Wasseroberfläche, die Sohle oder die Kaimauer.

Abb. 3.8: Standardsituation 1 [GBB, 2004]

Bei der *Standardsituation 1*, wie Abbildung 3.8 zeigt, ist der Schraube kein Zentralruder nachgeordnet, sodass keine Strahlteilung stattfindet. Der Strahl kann sich zu den Seiten hin ausbreiten und wird nur durch die Wassertiefe begrenzt.

Die Zunahme des Strahlkegeldurchmessers d_x kann über den folgenden Ansatz bestimmt werden:

$$d_x = D + 2 * x * \tan \alpha$$
 Gl. 3-28

mit

Die Ablenkung der Strahlachse zur Sohle beträgt für einen freien Propeller $\alpha_0 \approx 2,5^{\circ}$ und für einen ummantelten Propeller $\alpha_0 \approx 0^{\circ}$. Der äußere Strahlbegrenzungswinkel beträgt in allen Fällen $\alpha = 13^{\circ}$ (vgl. Abb. 3.8).

Abb. 3.9: Standardsituation 2 [GBB, 2004]

In Abbildung 3.9 ist die *Standardsituation* 2 dargestellt. Durch ein nachgeordnetes Zentralruder wird der Strahl in einen Sohl- und einen Oberflächenstrahl aufgeteilt. Die Strahlausbreitung erfolgt mit einer Ablenkung der Strahlachsen (der beiden Teilstrahlen zur Sohle bzw. zur Wasseroberfläche) von jeweils $\alpha_0 \approx 12^{\circ}$. Der äußere Strahlbegrenzungswinkel beträgt gegen die Sohle $\alpha \approx 13^{\circ}$ (vgl. Abb. 3.9)

Abb. 3.10: Standardsituation 3 [GBB, 2004]

Die *Standardsituation 3*, beschreibt das Ablegen von einer senkrechten Kaimauer. Hierbei findet durch das nachgeordnete Ruder eine Strahlteilung bei gleichzeitiger Strahlablenkung statt. Außerdem wird der Strahl wird durch die seitliche Kaimauer begrenzt. Diese Situation ist in Abbildung 3.10 (Draufsicht) dargestellt. Die Strahlausbreitung erfolgt mit einer seitlichen Ablenkung von $\alpha_0 \approx 7,0^{\circ}$ (horizontal) und einem äußeren Strahlbegrenzungswinkel von ca. $\alpha = 13^{\circ}$ (horizontal gegen die Kaimauer) und $\alpha = 12^{\circ}$ (vertikal gegen die Sohle).

Abb. 3.11: Standardsituation 4 [GBB, 2004]

In Abbildung 3.11 ist die *Standardsituation 4* dargestellt. Bei einer vertikalen Begrenzung der Strahlausbreitung in Strahlrichtung findet eine Umlenkung zu den Seiten und der Sohle statt, wobei ein reflektierter Sohlstrahl entsteht. Die Strahlausbreitung erfolgt ohne Ablenkung der Strahlachse zur Sohle ($\alpha_0 = 0^\circ$). Der äußere Strahlbegrenzungswinkel beträgt, ebenso wie der umgelenkte Sohlstrahl, ca. $\alpha = 13^\circ$.

Zwischensituationen können durch eine geeignete Parameterwahl dargestellt werden [GBB, 2004].

3.2.4 Strahlerzeugung eines Bugstrahlruders

Die, anhand des Heckpropellers, dargestellten theoretischen Grundlagen zur schiffsbedingten Strahlerzeugung sind auf das Bugstrahlruder übertragbar. Allerdings werden die Gleichungen, aus den vorigen Kapiteln, den Besonderheiten des Bugstrahlruders angepasst und nachfolgend erläutert.

Der Ansatz für die induzierte Anfangsgeschwindigkeit eines Bugstrahles kann aufbauend auf der vereinfachten Strahltheorie des Propellers ermittelt werden. Der installierte Propeller saugt die Flüssigkeit aus der Einlaufumgebung an und stößt sie beschleunigt als Strahl aus. Hierbei wird der Schub *T* erzeugt, mit dem die Steuerung des Schiffes möglich ist. Die induzierte Geschwindigkeit am Austritt des Bugstrahlruders berechnet sich nach RÖMISCH [1993] zu:

$$v_{0,B} = \left[P_B * \frac{8}{\pi * \rho_W} * \frac{1}{(1 + \sum \zeta) * D_B^2} \right]^{\frac{1}{3}}$$
Gl. 3-29

mit

P_B Leistung des Bugstrahlruders [kW]

$$1+Σζ$$
 = 1 bis 5, nach VOLLHEIM [1979] in RÖMISCH [1993] [-]

Nach den EAU [2004] ergibt sich für einen mittleren Wert von $(1+\sum \zeta) \approx 2.25$ der folgende Ansatz:

$$v_{0.B} = 1.04 * \left[\frac{P_B}{\rho_W * D_B^2}\right]^{\frac{1}{3}}.$$
 GI. 3-30

Der Ansatz nach BLAAUW und VAN DE KAA [1978] berücksichtigt das Bugstrahlruder als einen ummantelten Propeller und berechnet die induzierte Anfangsgeschwindigkeit des Bugstrahlruders $v_{0,B}$ mit:

$$v_{0.B} = 1.1 * \left[\frac{P_B}{\rho_W * D_B^2} \right]^{\frac{1}{3}}$$
. Gl. 3-31

Die Berechnung in Abhängigkeit der Leistung P_B und des Schubbeiwertes erfolgt nach dem GBB [2004] analog zu Gleichung 3-3:

$$v_0 = 1,13 * n * D * \sqrt{k_{T,DP}}$$
. Gl. 3-32

Strahlausbreitung eines Bugstrahlruders

Ein Bugstrahler wird hauptsächlich bei den Ab- und Anlegemanövern der Schiffe im Hafen eingesetzt. Die Begrenzung und somit die Beeinträchtigung des Propellerstrahls erfolgt durch die Kaimauer.

Der erzeugte Strahl trifft auf die Kaimauer und wird dort allseitig umgelenkt. Nach SCHMIDT [1998] ergeben sich, wie in Abbildung 3.12 dargestellt, fünf unterschiedliche Zonen der Strahlausbreitung:

- 1. Strahlinduktion
- 2. Strahlausbreitung
- 3. Stoß- und Umlenkbereich
- 4. Wandstrahlbereich und
- 5. Sohlenstrahlbereich.

Abb. 3.12: Propellerstrahlzonen eines Bugstrahlruders beim Auftreffen auf eine Kaimauer nach SCHMIDT [1998]

Die Geschwindigkeiten in den einzelnen Zonen werden maßgebend anhand des Durchmessers des Bugstrahlers D_B , dem Abstand zwischen Propeller und Kaimauer *L*, sowie dem Abstand von Propellerachse und Sohle h_p bestimmt (vgl. Abb. 3.12). Die Ausbreitung der Geschwindigkeiten in horizontaler Richtung wird als Fortschreiten in *x*- Richtung und die vertikale Ausrichtung als Fortschreiten in *r*- Richtung beschrieben (analog zu Abb. 3.7).

Bei der Strahlinduktion und der Strahlausbreitung hängt die Geschwindigkeitsverteilung von dem Verhältnis L zu D_B ab. Aus der grafischen Auswertung von Messdaten ergibt sich für die Abnahmecharakteristik des Propellerstrahls [SCHMIDT, 1998]:

$$\frac{v_{x,max}}{v_0} = 2,0 * \left[\frac{L}{D_B}\right]^{-1,0}.$$
 GI. 3-33

mit

L Abstand zwischen Propeller und Kaimauer (Abb. 3.12) [m]

D_B Propellerdurchmesser des Bugstrahlruders (Abb. 3.12) [m]

Unter der Annahme, dass zwischen der Strahlinduktion und der Strahlausbreitung Kontinuität herrscht, muss nach SCHMIDT [1998] die Länge der ersten Zone $x_0 = 2,0 * D$ betragen. Im Vergleich dazu ergibt sich aus der Gleichung 3-21 für einen freien Propeller eine Länge von $x_0 = 2,6 * D$.

Im Stoß- und Umlenkbereich wird die kinetische Energie aus dem Strahl in Druck umgewandelt. Dieser Druck ist an dem Punkt am größten, an dem die Geschwindigkeit gleich Null ist. Nach KRAATZ [1989] in SCHOKKING [2002] findet diese Umwandlung im Bereich von x = 0.3 * L vor der Kaimauer statt.

Die Zone der Strahlausbreitung wird demnach auf $2,0 * D < x \le 0,7 * L$ begrenzt.

Im Wandstrahlbereich bildet sich aus dem horizontalen Strahl ein vertikaler Wandstrahl. Der Druck wandelt sich wieder in kinetische Energie (Geschwindigkeit) um. Sofern $r_o < r \le 0.7 * L$ findet diese Umwandlung erneut statt, sodass die maximale Geschwindigkeit bei r = 0.7 * L erreicht wird [KRAATZ, 1989 in SCHOKKING, 2002].

Die Geschwindigkeit im Sohlenstrahlbereich ist nach GI. 3-32 zu berechnen. In diesem Ansatz werden die Energieverluste aufgrund der Reflexion an der Wand vernachlässigt [RÖMISCH, 1975]. Die Sohlgeschwindigkeit entspricht daher der Geschwindigkeit in der freien Strahlausbreitung:

$$\frac{v_{x,Sohle}}{v_{0,B}} = 2,0 * \left[\frac{L}{D_B}\right]^{-1,0}.$$
 GI. 3-34

Der nach unten gerichtete Strahlanteil hat wesentliche Auswirkungen auf die Sohle und kann Auskolkungen verursachen.

Der Ansatz von BLOKLAND [1994] ermittelt für die maximale Strahlgeschwindigkeit, an der Sohle am Fuß der Kaimauer:

für $\frac{L}{h_P} \leq 1.8$ gilt:

$$v_{max,S,K} = 1,0 * \frac{v_0 * D}{h_P}$$
 GI. 3-35

und für $\frac{L}{h_P} \ge 1.8$ gilt:

$$v_{max,S,K} = 2,8 * \frac{v_0 * D}{L + h_P}$$
 GI. 3-36

mit

L Abstand der Austrittsfläche Bugstrahlruder zur Kaimauer [m].

Weiterhin gilt für die Umlenkung an der Kaimauer für die weitere Abnahme des Strahls in Abhängigkeit vom Abstand x_k von der Kaimauer nach BLOKLAND [1994]:

$$v_{max,S,xK} = \left(\frac{L*h_P}{x}\right)^{1,62}$$
GI. 3-37

mit

- xEntfernung entlang der Strahlachse[m]ab Düsenaustritt über Kaimauer und Sohle $= L + h_P + x_k$
- *x_k* Abstand des umgelenkten Strahls auf der Sohle, [m]ab Kaimauer.

Trifft der Strahl nicht auf eine Kaimauer, sondern auf ein geböschtes Ufer, ergibt sich aus Messungen von SCHOKKING [2002], der folgende Ansatz für die maximale axiale Strömungsgeschwindigkeit v_{max} :

für den Bereich $\frac{x}{D} \le 1,0$:

$$v_{max} = v_0$$
 Gl. 3-38

und für $\frac{x}{D} > 1,0$

$$v_{max} = v_0 * \left(\frac{x}{D}\right)^{\frac{1}{3}}$$
. Gl. 3-39

Bei einem Bugstrahlruder ist die Abnahme der induzierten Anfangsgeschwindigkeit geringer als bei einem freien Propeller.

4 Bemessung und Schutzmaßnahmen

4.1 Belastung der Kaimauern

Hinsichtlich der Schäden, die aus der Belastung des Propellerstrahls entstehen, werden die Kaimauerkonstruktionen in vollwandige und offene Typen eingeteilt. In diesem Kapitel werden die vollwandigen Kaimauerkonstruktionen betrachtet. Bei dieser Art von Konstruktion liegt die Gefahr der Auskolkung am Fuß der Mauer. Die offenen Strukturen sind differenzierter zu untersuchen. Die Auskolkung um die Pfähle muss zum einen und der Kolk auf die Böschung zum anderen analysiert werden [PIANC, 2008]. Die Auswirkung des Propellerstrahls auf eine Böschung wird im folgenden Kapitel erläutert. Die Auskolkung um die Pfähle wird in dieser Arbeit nicht betrachtet.

Abb. 4.1: Kolk vor der Kaimauer infolge der Belastung aus dem Bugstrahlruder [SCHMIDT, 1998]

Abbildung 4.1 stellt den Kolk am Fuß der Kaimauer dar, der sich infolge der Belastung des Bugstrahlruders einstellt. Der Propellerstrahl trifft, wie in Kapitel 3.2 beschrieben, auf die Kaimauer und wird nach allen Seiten umgelenkt. Die Ablenkung zu den Seiten sowie nach oben wird nicht betrachtet. Der nach unten gerichtete Wandstrahl erreicht im Fußbereich der Mauer die Hafensohle. Dort wird er wiederum umgelenkt und kann wesentliche Auswirkungen auf die Sohle zur Folge haben. Es kann zu Auskolkungen mit der Tiefe T_K kommen. Die Standsicherheit der gesamten Kaimauer wird, aufgrund des Ausspülens bzw. der Auflockerung des stützenden Bodens vor dem Fuß der Kaimauer, gefährdet.

Die Belastung der Kaimauer infolge des Hauptantriebes ist vom Winkel abhängig, mit der das Ruder auf die Kaimauer zeigt. Modellversuche der *TU Dresden* zeigen, dass bereits Ruderwinkel von 10° den Propellerstrahl direkt zur Kaimauer richten [RÖMISCH, 1993].

4.2 Belastung der Böschungen und Sohlen

Die erforderliche Steingröße wird anhand der maximal auftretenden Geschwindigkeit ermittelt. An Böschungen sind als bemessungsrelevante Stellen, die in der Abbildung 4.2 dargestellten, *Punkte 1 und 2* zu untersuchen. An *Punkt 1* kann sich die maximale Geschwindigkeit einstellen, weil der Strahl zuerst an dieser Stelle auf die Böschung trifft. *Punkt 2* befindet sich auf der Achse mit der maximalen Geschwindigkeit im Strahl. Es ist demnach zu ermitteln, ob die abgebaute Geschwindigkeit auf der Achse (an *Punkt 2*) oder die Randgeschwindigkeit (*Punkt 1*), welche zuerst die Böschung erreicht, maßgebend ist.

Die Ermittlung der Geschwindigkeiten erfolgt nach der Theorie von ALBERTSON ET AL. in BLAAUW und VAN DE KAA [1978]. Anhand dieser ist die Berechnung der Geschwindigkeit v_x an jeder beliebigen Stelle im Strahl möglich. Die entsprechenden Gleichungen sind in Kapitel 3.2 dargestellt.

Abb. 4.2: Belastung der Böschung infolge des Propellerstrahls

Ziel der Steinschüttung ist es, die strömungsbedingten Angriffe aus dem Propellerstrahl aufzunehmen sowie Erosionen und Auskolkungen an den Böschungen zu verhindern. Dafür müssen die einwirkenden Kräfte kleiner sein als die widerstehenden.

Über den gesamten Bereich der Böschung, der von dem Propellerstrahl beeinflusst wird, bilden sich hochturbulente Strömungen aus. Im Vergleich zur Kaimauer, an der beim Umlenken und Fortschreiten des Strahls an der Wand, die Reibungsverluste vernachlässigt werden [RÖMISCH, 1975], sind die Reibungsverluste am Deckwerk zu betrachten.

Im Folgenden werden die bemessungsrelevanten Kräfte die sich infolge einer Strömung auf einen einzelnen Stein sowie auf einen Stein im Verbund ergeben, aufgezeigt. Für die Fälle an der Sohle und an der Böschung mit der Neigung β werden die Gleichgewichtsbedingungen formuliert.

Zu den Einwirkungen gehören die Schubkraft F_D , die aus dem Propellerstrahl resultiert, die Beschleunigungskraft F_S und die Liftkraft F_L . Als Widerstand wirken diesen Kräften das Eigengewicht der Steinschüttung *G* und die Reibungskraft F_R gegenüber.

Sind die einwirkenden Kräfte größer, als die widerstehenden, verursacht die böschungs- bzw. sohlparallele Schubkraft F_D ein Abgleiten oder Abschieben. Aufgrund der Liftkräfte F_L (senkrecht zur Schubspannung definiert) ist ein Abheben und Herauslösen von Abdeckelementen oder Einzelsteinen aus dem Verband möglich. Infolge der in Strömungsrichtung wirkenden Beschleunigungskräfte F_S kann es zu einem Abrutschen bzw. Abgleiten von einzelnen Steinen oder ganzen Elementen kommen [HANSEN, 1985].

4.2.1 Bemessungsrelevante Kräfte

Die Schubkraft F_D auf einen Stein unter dem Einfluss strömungsbedingter Kräfte berechnet sich nach HANSEN [1985] zu:

$$F_D = c_D * \frac{\rho_W}{2} * A_D * v^2$$
 [kN] Gl. 4-1

mit

c_D	Anströmbeiwert, = 0,5	[-]
$ ho_W$	Dichte von Wasser	[t/m ³]
A_D	angeströmte Fläche	[m²]

v Strömungsgeschwindigkeit über der Sohle/Böschung [m/s].

Die Schubkraft F_D auf den Stein nach Gleichung 4-1 wird maßgeblich von der Strömungsgeschwindigkeit v, die quadratisch in die Gleichung eingeht, und der Größe der angeströmten Fläche A_D beeinflusst. Die Schubkraft F_D wird mit steigendem v und A_D größer.

Die Beschleunigungskraft F_S , als vom Steinelement verdrängte und durch die Strömung beschleunigte Wassermenge, ergibt sich zu:

 $F_S = c_S * V * \rho_W * \frac{dv}{dt}$ [kN] Gl. 4-2

c_S	Beschleunigungsbeiwert, = 0,5	[-]
V	Volumen des Steinelementes	[m ³]

$ ho_W$	Dichte von Wasser	[t/m ³]
dv dt	Beschleunigung	[m/s ²]

Die Beschleunigungskraft F_S wird nach Gleichung 4-2 vom Volumen V des Steinelementes und der Beschleunigung $\frac{dv}{dt}$ beeinflusst. Eine Vergößerung dieser Parameter hat einen Anstieg der Beschleunigungskraft F_S zur Folge.

Die Liftkraft F_L wird über den Ansatz in HANSEN [1985] berücksichtigt, nach dem das Verhältnis von Liftkraft zu Schubkraft ca. 0,2 beträgt:

$$F_L = F_D * 0.2.$$
 [kN] Gl. 4-3

Gleichung 4-3 entsprechend wird bei einer Vergrößerung der Schubkraft auch die Liftkraft anteilsmäßig gesteigert.

Das Gewicht des Steines G berechnet sich nach HANSEN [1985] zu:

$$G = V * [(\gamma_S - \gamma_W) - \Delta \gamma]$$
 [kN] Gl. 4-4

mit

V	Volumen des Steinelements		
Υs	Wich	te des Steines	[kN/m ³]
γ_W	Wich	te von Wasser	[kN/m ³]
Δγ	Antei	I der Wichte aufgrund der Beschleunigungskraft	[kN/m ³]
	$= c_M$	$*V*\alpha^**\frac{dv}{dt}$	
	mit		
	C _M	Beschleunigungsbeiwert, = 0,5	[-]
	$lpha^*$	Einbettungsziffer	[-]
		= 1,0 (Oberfläche wie lose Steinschüttung)	
		= 0,5 (Vollvergossene Steinschüttung)	

V	Volumen des Steinelementes	[m ³]	
dv dt	Beschleunigung	[m/s²].	

Bei der Berechnung des Gewichts *G* nach Gleichung 4-4 wird berücksichtigt, dass sich *G* durch die Auftriebskraft sowie die Beschleunigungskraft verringert. Dies geschieht über die Abminderung der Wichte des Steines γ_S mittels der Wichte von Wasser γ_W und dem Anteil der Wichte aufgrund der Beschleunigungskraft $\Delta \gamma$. Das Gewicht *G* vergrößert sich mit steigendem Volumen *V*, steigender Steinwichte γ_S und sinkender Beschleunigungskraft F_S .

Die Reibungskraft F_R ist vom Reibungswinkel φ abhängig und berechnet sich zu:

$$F_R = V * [(\gamma_S - \gamma_W)] * \tan \varphi \qquad [kN] \quad Gl. 4-5$$

mit

$$\varphi$$
 Reibungswinkel [°]

Umso größer nach Gleichung 4-5 der Reibungswinkel φ , das Volumen *V* und die Wichte γ_S werden, desto größer wird die Reibungskraft *F*_{*R*}.

4.2.2 Gleichgewicht am einzelnen Stein

In Abbildung 4.3 und 4.4 werden die bemessungsrelevanten Kräfte aus Kapitel 4.2.1 dargestellt. Im Folgenden werden die Gleichgewichtsbedingungen zuerst für einen Stein an der Sohle (Abb. 4.3) und anschließend für einen Stein an einer Böschung mit Neigung β (Abb. 4.4) erläutert und diskutiert.

Abb. 4.3: Kräfte am einzelnen Stein an der Sohle

Bei dem Gleichgewicht der horizontalen Kräfte für einen einzelnen Stein auf dem die in Abbildung 4.3 dargestellten Kräfte angetragen sind, wirken die Schubkraft F_D und die Beschleunigungskraft F_L entgegen der aktivierten Reibungskraft F_R (vgl. Abb. 4.3). Die horizontale Gleichgewichtsbedingung lautet:

$$F_D + F_S \le F_R \tag{GI. 4-6}$$

$$c_D * \frac{\rho_W}{2} * A_D * v^2 + c_S * V * \rho_W * \frac{dv}{dt} \le V * [(\gamma_S - \gamma_W)] * \tan \varphi$$
 Gl. 4-7

Aus Gleichung 4-7 geht hervor, dass das Gleichgewicht des Steins in horizontaler Richtung maßgeblich von der Strömungsgeschwindigkeit v (als Einwirkung) sowie der Steinwichte γ_S und dem Reibungsswinkel φ (als Widerstände) abhängig ist. Die Abmaße des Steines in Form des Volumens Vund der Anströmfläche A_D beeinflussen sowohl die einwirkende als auch die widerstehende Seite der Gleichung 4-7. Bei der vertikalen Gleichgewichtsbetrachtung nach Abbildung 4.3 wird die Gewichtskraft G der Liftkraft F_L gegenübergesetzt. Es muss gelten:

$$F_L \le G$$
 GI. 4-8

$$\left(c_D * \frac{\rho_W}{2} * A_D * v^2\right) * 0.2 \le V * \left[(\gamma_S - \gamma_W) - \Delta\gamma\right]$$
Gl. 4-9

Gleichung 4-9 verdeutlicht, dass die Abmaße des Steins als Volumen *V* bzw. Anströmfläche A_D beide Seiten beeinflussen, sodass das Gleichgewicht endscheidend von der Strömungsgeschwindigkeit *v* und der Steinwichte γ_S abhängig ist.

Für das Momentengleichgewicht wurde als Drehpunkt (A) der oberste Punkt von Übergang des Steines zur Sohle gewählt. Verglichen werden die destabilisierenden mit den stabilisierenden Momenten. Das destabilisierende Moment wird durch die angreifende Strömung mit den Kräften F_D , F_S und F_L erzeugt. Das stabilisierende Moment resultiert aus dem Gewicht *G* und der Reibungskraft F_R . Die Hebelarme sind von der Lage des Punktes A und somit von der Einbindetiefe des Steins in den Boden abhängig.

Abb. 4.4: Kräfte am einzelnen Stein mit Böschungsneigung β

Für einen einzelnen Stein an einer Böschung werden dieselben Kräfte als Einwirkung bzw. Widerstand betrachtet, entsprechend einem Stein an der Sohle. In Abbildung 4.4 ist die Darstellung der Kräfte gegeben. Die Schubkraft F_D wirkt ebenso wie die Beschleunigungskraft F_S und die Reibungskraft F_R parallel zur Böschung. Die Liftkraft F_L wirkt definitionsgemäß senkrecht zur Schubkraft F_D und somit senkrecht auf die Böschung. Die Gewichtskraft G wird in einen böschungsparallelen Anteil ($G * \sin \beta$) und einen Anteil senkrecht zur Böschung ($G * \cos \beta$) aufgeteilt. Somit erhöht sich mit steigender Böschungsneigung β der böschungsparallele Anteil der Gewichtskraft ($G * \sin \beta$). Der Anteil senkrecht zur Böschung ($G * \cos \beta$) wird entsprechend kleiner. Bei einer Böschungsneigung von 1:3 (18,4°) wird die Gewichtskraft gegenüber der Sohle (0°), mit dem Faktor 0,949 abgemindert. Bei einer Neigung von 18,4° beträgt der sohlparallele Anteil 0,314 von G.

Die Gleichgewichtsbetrachtungen werden parallel sowie senkrecht zur Böschungsneigung β , in Anlehnung an Abbildung 4.4, durchgeführt.

Bei dem Gleichgewicht der böschungsparallelen Kräfte wirken die Schubkraft F_D und die Beschleunigungskraft F_S , entgegen der aktivierten Reibungskraft F_R und dem böschungsparallelen Anteil der Gewichtskraft ($G * \sin \beta$) (vgl. Abb. 4.4). Die horizontale Gleichgewichtsbedingung lautet:

$$F_D + F_S \le F_R + G * \sin\beta \qquad \qquad \text{GI. 4-10}$$

$$c_D * \frac{\rho_W}{2} * A_D * v^2 + c_S * V * \rho_W * \frac{dv}{dt} \le V * [(\gamma_S - \gamma_W)] * \tan \varphi$$
 GI. 4-11

Analog zu Gleichung 4.7 geht aus Gleichung 4.11 hervor, dass das Gleichgewicht des Steines in böschungsparalleler Richtung maßgebend von der einwirkenden Strömungsgeschwindigkeit v sowie der Steinwichte γ_S und dem Kraftübertragungswinkel φ (als Widerstände) abhängig ist. Die Abmaße des Steines in Form des Volumens V und der Anströmfläche A_D beeinflussen sowohl die einwirkende als auch die widerstehende Seite der Gleichung 4-11. Zusätzlich wirkt der böschungsparallele Anteil der Gewichtskraft ($G * \sin \beta$) nach Abbildung 4.4 auf der Seite der Widerstände als weitere Kraftgröße, die in ihrer Größe vom Gewicht G des Steines und der Neigung β der Böschung abhängig

ist. Für den Fall, dass die Strömung in entgegengesetzter Richtung angreift, wirkt sich diese Komponente als destabilisierender Anteil aus.

Bei der Gleichgewichtsbetrachtung senkrecht zur Böschung wird der Anteil der Gewichtskraft in dieser Richtung ($G * \cos \beta$) der Liftkraft F_L gegenübergesetzt (vgl. Abb. 5.9), sodass gilt:

$$\left(c_{D}*\frac{\rho_{W}}{2}*A_{D}*v^{2}\right)*0.2 \leq \{V*[(\gamma_{S}-\gamma_{W})-\Delta\gamma]\}*\cos\beta$$
 GI. 4-13

Der Vergleich der Gleichungen 4.13 und 4-9 verdeutlicht, dass die Böschungsneigung β sich negativ auf die wiederstehende Kraft (Gewichtskraft *G*) auswirkt und diese abmindert. Des Weitereren gelten die anhand Gleichung 4.9 diskutierten Zusammenhänge.

In Bezug auf das Momentengleichgewicht um den Drehpunkt (A), der hier analog zur Sohle gewählt wurde, werden die destabilisierenden Momente durch den böschungsparallelen Anteil ($G * \sin \beta$) verstärkt und das stabilisierende Moment wird durch die Böschungsneigung β durch den Faktor ($\cos \beta$) abgemindert. Die Hebelarme sind wiederum von der Lage des Punktes A abhängig.

4.2.3 Gleichgewicht am Stein im Verbund

In Abbildung 4.5 und 4.6 sind analog zum vorherigen Kapitel 4.2.3 die bemessungsrelevanten Kräfte an einem Stein im Verbund an der Sohle (Abb. 4.5) und an einem Stein im Verbund an einer Böschung mit der Neigung β (Abb. 4.6) dargestellt.

Im Wesentlichen ändert sich gegenüber Kapitel 4.2.2 die Reibungskraft F_R , die als ein entscheidender Anteil in die horizontale Gleichgewichtsbedingung sowie das Momentengleichgewicht eingeht. Als Drehpunkt A wird der Berührungspunkt zu dem anliegenden Stein gewählt. Für den Fall, dass die Einwirkungen größer sind als die Widerstände, rollt sich der Stein über diesen Punkt ab.

Abb. 4.5: Kräfte am Stein im Verbund an der Sohle

Abb. 4.6: Kräfte am Stein im Verbund mit Böschungsneigung β

4.3 Schutzmaßnahmen gegen Kolke

In GATTERMANN ET AL. [2000] wird empfohlen, bei einer zu hohen Belastung infolge des Propellerstrahls, eine Absenkung der Berechnungssohle um 2 m unter die erforderliche Hafensohle vorzunehmen. Des Weiteren sollen auf weiteren 2 m reduzierte Bodenreibungswerte angenommen werden, damit die Standsicherheitskriterien erfüllt sind.

Nach den Erfahrungen von RÖMISCH [1993] lassen sich drei Erosionsschutzzonen definieren:

- 1. Bei Kolktiefen bis $T_K/D < 0.5$ und Geschwindigkeiten von $v_0 < 6.0$ m/s wird die Kaimauer mit einem Kolkzuschlag geschützt. Das Sohlmaterial ist sehr grob (Korngrößen mit einem Durchmesser von d = 0.05 bis 0.15 m). Die Teilverfüllung des Kolks erfolgt mit Material von d = 0.2 bis 0.25 m.
- 2. Für Geschwindigkeiten, die im Bereich von 6,0 m/s $< v_0 < 7,0$ m/s liegen und Kolktiefen mit $T_K/D = 0$ ist der Schutz der Kaimauer mit einer losen Steinschüttung mit einem erforderlichen Steindurchmesser von $d_{erf} = 0,2$ bis 0,85 m vorgesehen.
- 3. Einen Schutz der Kaimauer mit Verbundmatten oder Sonderkonstruktionen wird für Geschwindigkeiten von $v_0 > 7,0$ m/s und $T_K/D = 0$ angegeben. Der Durchmesser der einzubauenden Steine liegt in diesem Fall bei $d_{erf} > 0,65$ bis 0,85 m. Der Einbau von losen Steinschüttungen kommt nicht mehr infrage, da die erforderlichen Steingrößen nicht mehr zu handhaben sind.

In den EAU [2004] werden zur Abwendung von Gefährdungen an Ufereinfassungen infolge Kolkbildung die folgenden Maßnahmen empfohlen:

- 1. Kolkzuschlag am Bauwerk
- 2. Abdecken der Sohle mit Steinschüttungen in loser/vergossener Form
- 3. Abdecken der Sohle mit flexiblen Verbundsystemen
- 4. Monolithische Betonplatten, z.B. in Fährbetten
- 5. Strahllenkende Gestaltung von Kaimauern.

4.3.1 Kolkzuschlag

Eine einfache Art eine Kaimauer gegen den Angriff des Propellerstrahls zu schützen, besteht darin, die entsprechende Kolktiefe bei der rechnerischen Gründungssohle zu berücksichtigen und als Kolkzuschlag mit in die Berechnung einzubringen. Der Kolk wird demzufolge in Kauf genommen. Als grobe Orientierung auf Grund der hohen Komplexität der Kolkprozesse berechnet sich die zu erwartende Tiefe eines Kolkes infolge eines Bugstrahlruders nach den EAU [2004] näherungsweise zu:

$$T_K = d_{85} * C_M * 3,05 * \left(\frac{v_{max,So}}{\sqrt{d_{85} * g * \Delta'}}\right)^{2,25}$$
Gl. 4-14

mit

- T_K Kolktiefe [m]
- d_{85} maßgebendes Korn der Hafensohle [m]
- C_M Beiwert [-]
 - = 1,0 für stationäre Strahlausbreitung,

= 0,3 für Strahlbelastung unter Anlegemanövern.

- $v_{max,So}$ Sohlgeschwindigkeit nach Gl. 3-34 (Bugstrahler) [m/s] g Erdbeschleunigung [m/s²]
- Δ' relative Dichte der Steine unter Wasser $[\frac{kg}{m^3}]$.

4.3.2 Lockere Steinschüttung

Ein häufig verwendetes Schutzsystem ist die lockere Steinschüttung. Hierbei muss eine ausreichende Stabilität gegen die Strömung aus dem Propeller und ein erosionssicherer Anschluss an das feste Bauwerk gewährleistet sein. Ebenso sollte der Einbau der Schüttsteine zwei- bis dreilagig erfolgen, damit die Sohle sicher abgedeckt ist. Die lockere Steinschüttung muss filterstabil hergestellt werden. Damit die erforderliche Strömungsstabilität gewährleistet werden kann, muss gelten:

$$d_{erf} \ge \frac{v_{Smax,So}^2}{B^2 * g * \left(\frac{\rho_S - \rho_W}{\rho_W}\right)}$$
GI. 4-15

mit

d _{erf}	erforderlicher Durchmesser der Befestigungssteine		
v _{max ,So}	, Sohlgeschwindigkeit nach Gl. 3-27 (Heckantrieb)	[m/s]	
	Sohlgeschwindigkeit nach Gl. 3-34 (Bugstrahler)	[m/s]	
В	Stabilitätsbeiwert	[-]	
	= 0,9 (für Heckpropeller ohne Zentralruder)		
	= 1,25 (für Heckpropeller mit Zentralruder)		
	= 1,20 (für Bugstrahlruder)		
g	Erdbeschleunigung	[m/s²]	
$\rho_{\rm S}, \rho_{\rm W}$	Dichte des Schüttmaterials bzw. des Wassers	[t/m ³].	

Die erforderlichen Steindurchmesser sind bis ca. 1,0 m zu handhaben, welches Sohlgeschwindigkeit von bis zu 5 m/s entspricht. Für höhere einer Geschwindigkeiten an der Sohle können Steinschüttungen im Teil- oder Vollverguss eingebaut werden. Beim Vollverguss, bei dem das gesamte Hohlraumvolumen der Schüttsteine vergossen wird, muss das Gewicht dem vorhandenen Wasserüberdruck unter der Deckschicht angepasst werden. Um eine Zerstreuung der Strömungen herbeizuführen, werden die Steinspitzen hier nicht vergossen. Bei Teilverguss werden die Steine nur in ihrer Lage fixiert und die Wasserdurchlässigkeit bleibt erhalten, wobei ein Wasserüberdruck verhindert wird. Der Verguss wird mit einem Mindestporenvolumen (Wasserdurchlässigkeit) von 10 bis 20 % sowie mit einer gleichmäßigen Dicke von i. d. R. 50 bis 60 cm eingebaut. Für eine ausreichend sichere Kolkabdeckung sollten 150 bis 200 l/m² (auf 60 cm bezogen) vergossen werden. Auf diese Weise sind die Steinschüttungen bis Sohlgeschwindigkeiten von 6 bis 8 m/s stabil. Als Vergussmittel sollen gut haftende und unter Wasser einbaufähige Mörtel bzw.

Betone mit Erosionsstabilisatoren oder Kolloidalmörtel eingesetzt werden. Der Einsatz von Bitumen ist beim Vollverguss ebenfalls möglich [EAU, 2004].

4.3.3 Verbundsystem

Bei induzierten Strahlgeschwindigkeiten $v_0 > 7,0$ m/s ergeben sich erforderliche Steindurchmesser von $d_{erf} > 0,65$ bis 0,85 m. Eine Steinschüttungen kommt nicht mehr infrage. In diesen Fällen ist es sinnvoll, ein Verbundsystem oder eine andere Sonderkonstruktion einzusetzen. Ein Verbundsystem besteht aus einzelnen Grundelementen, die durch Verkopplung untereinander einen flächigen Belag darstellen. Es werden seil- oder kettenverkoppelte Betonelemente, Gabionen oder Geotextilmatten eingesetzt. Wichtig ist die flexible Verkopplung untereinander, damit die Elemente an die Kolke angepasst werden können und diese stabilisieren. Ein allgemeiner Bemessungsansatz liegt aufgrund der Vielzahl der angebotenen Systeme nicht vor [EAU, 2004]. In RÖMISCH [1993] ist der folgende Ansatz für Draht-Schotter-Matratzen dargestellt:

$$h_{Matt} \geq \frac{v_{Sohle}^2}{C^2 * B^2 * g * \left(\frac{\zeta_S - \rho_W}{\rho_W}\right)}$$
GI. 4-16

mit

В	Stabilitätsbeiwert	[-]
	= 0,9 bis 1,25 je nach Belastung [Römisch, 1993]	
ζ_{s}'	Rohdichte der Matte	[t/m ³].

4.3.4 Unterwasserbetonsohle

Eine Unterwasserbetonsohle wird besonders bei hohen Sohlgeschwindigkeiten eingebaut, da sich die Schubspannungen auf die gesamte ebene Fläche verteilen können. Sie bietet somit für begrenzte Bereiche einen wirksamen Erosionsschutz. Allerdings kann es bei Setzungen zu Brüchen in der starren Betonsohle kommen. Die Unterwasserbetonsohle wird mit einer Dicke von 0,30 bis 1,00 m eingebaut. Die Umsetzung ist sehr kostenaufwändig und technologisch kompliziert.

4.3.5 Strahlumlenker

Bei der Belastung durch ein Bugstrahlruder ist die Anordnung eines sogenannten *Strahlumlenkers* besonders effizient. Die speziell geformten Betonblöcke, die am Fuß einer vertikalen Kaimauer (Spundwand) angeordnet werden, sind mit ihren Mindestabmessungen in Abbildung 4.7 dargestellt. Durch diese Konstruktion ist es möglich, die Kolktiefe zu reduzieren.

Abb. 4.7: Mindestabmessungen für einen *Strahlumlenker* nach Römisch [2001]

Die Kolktiefe $T_{K,\alpha,m,SL}$ infolge des Propellerstrahls aus dem Bugstrahlruder mit strahllenkenden Maßnahmen berechnet sich nach den [EAU, 2004] zu:

$$T_{K,\alpha,m,SL} = C_{SL} * (1 + 0.005 * \alpha) * C_{\alpha} * T_{K}$$
 GI. 4-17

mit

α	Neigung der Spundwand	[°]
C _{SL}	Kolkreduktionsfaktor bei Anordnung eines Strahumlenkers, nach Tabelle 4.1	[-]
Cα	Strahlteilungsverhältnis, nach Tabelle 4.1	[-]
T_K	Kolktiefe ohne strahllenkende Maßnahmen	[m].

Tab. 4.1: Strahlteilungsverhältnis C_{α} und Kolkreduktionsfaktor C_{SL}

	$\alpha = 0^{\circ}$	$\alpha = 10^{\circ}$	$\alpha = 20^{\circ}$	$\alpha = 30^{\circ}$
Cα	1,00	0,78	0,58	0,38
C_{SL}	0,25	0,20	0,10	0,05

Anhand mehrerer Tests von LINDNER [1997] und HACKMANN [1997] hat sich die Annahme bestätigt, dass sich die Kolktiefe T_K umso geringer einstellt, je größer der Wert der Neigung α der Spundwand ist. Bei einer Neigung von 5° beträgt die Tiefe des Kolkes 91 % der Ursprungstiefe (bei 0°). Wird die Neigung auf 20° vergrößert, weist der Kolk noch 64 % seiner Ursprungstiefe auf.

Beim Auftreffen auf die Uferwand wird der Strahl bei einer vertikalen Wand in gleichen Teilen nach oben und unten abgelenkt. Bei einer Neigung, entsprechend Abbildung 4.7 wird der obere Anteil des Strahls vergrößert und der untere reduziert, weshalb auch die Tiefe des Kolks abnimmt

4.3.6 Mindestabmessungen der Schutzmaßnahmen

Bei der Herstellung von Befestigungen vor einer Kaimauer sind Mindestabmessungen einzuhalten. Es ist wirtschaftlich nicht umsetzbar, die Befestigungen bis an die Stellen aufzubringen, an denen sich die Strahlgeschwindigkeit komplett abgebaut hat.

Abb. 4.8: Mindestabmessungen von Befestigungen vor einer Kaimauer [EAU, 2004]

Die folgenden Abmessungen nach Abb. 4.8 sollen nach den EAU [2004] mindestens eingehalten werden:

Normal zum Kai: L_N = 3 bis $4 * D + \Delta RS$ Längs zum Kai: $L_{L,H,1}$ = 6 bis $8 * D + \Delta RS$ $L_{L,H,2}$ = $3 * D + \Delta RS$ $L_{L,H,3}$ = 3 bis $4 * D + \Delta RS$ mit ΔRS Zuschlag für die Randsicherung, ca. 3 - 5 m.
Bei diesen Mindestabmessungen ist am Rand mit 70 bis 80 % der maximalen Sohlgeschwindigkeiten zu rechnen. Es muss darauf geachtet werden, dass es nicht zu Randkolken kommt, die eine Unterspülung der gesamten Konstruktion zur Folge haben können [EAU, 2004].

4.4 Bemessung der erforderlichen Steingröße und der Kolktiefe

Die erforderliche Steingröße wird über die maximale Strömungsgeschwindigkeit v_{max} und aus dem Verhältnis der Dichte von Wasser ρ_W zu den Steinen unter Auftrieb $\rho_S - \rho_W$ errechnet. Die folgenden Gleichungen unterscheiden sich anhand der empirischen Faktoren, die ebenfalls die Steingröße beeinflussen.

Nach HANSEN [1985] ergibt sich für den erforderlichen Steindurchmesser $D_{r,0}$:

$$D_{r,0} = \sqrt[3]{\frac{0,062 * v^6}{0,245 * 2,650}} = 0,04574 * v^2$$
 Gl. 4-18

mit den Faktoren

- 0,245 Faktor aus Reihenuntersuchung von KNIESS [1977] der das Volumen V eines Steines mit $V = 0,245 * D^3$ ermittelt hat
- 2,650 als Basis zugrunde gelegte Trockenrohsichte, $\rho_S = 2,650 \text{ kg/m}^3$ (für Granitsteine)
- 0,062 verwendete Beziehung von KNIESS [1977] zwischen erforderlicher Masse eines Einzelsteins auf der Deckschicht in Bezug auf die angreifende Strömungsgeschwindigkeit: $M = 0,062 * v^6$.

Für die Steingröße bei weitgehend böschungsparallelem Strömungsangriff kann folgende Formel nach GBB [2004] zur groben Abschätzung verwendet werden:

$$D_{50} = C_{Isb} * C_{B\ddot{o}} * \frac{v_{max}^2}{g} * \frac{1}{\frac{\rho_S - \rho_W}{\rho_W}}$$
GI. 4-19

mit

<i>D</i> ₅₀	erforderliche		[m]		
C _{Bö}	Faktor zur Berücksichtigung der Böschungneigung = $1/cos\beta * [1 - (tan^2\beta/tan^2\varphi'_D)]^{0.5}$				[-]
	mit	$eta \ \phi_{ m D}^{'}$	Böschungsneigung innerer Reibungswinkel		[°] [°]
C _{Isb}	Faktor nach	Isbach,	≈ 0,7		[-]
ρ_W, ρ_S	Wasser- und Steindichte				[t/m³].

Die erforderliche Steingröße D_{50} aus der Belastung Propellerstrahls zur Gewährleistung der Sohlenstabilität ohne signifikante Kolkbildung berechnet sich nach GBB [2004] zu:

$$D_{50} \ge B_S * \frac{v_{max,So}^2}{g} * \frac{\rho_W}{\rho_S - \rho_W}$$
 GI. 4-20

mit

*B*_S Beiwert bei Strahlangriff auf ebener Sohle [-]

 \approx 1,23 für ein Schiff ohne Zentralruder und Binnenschiff mit Tunnelheck, *Standardsituationen 1 und 4* (vgl. Abb. 3.8 und Abb. 3.11) und ein Bugstrahlruder

 \approx 0,64 für ein Schiff mit Zentralruder, *Standardsituationen 2 und 3* (vgl. Abb. 3.9 und Abb. 3.10)

 $v_{max,So}$ maximale Strömungsgeschwindigkeit an der Sohle [m/s] nach Gl. 3-27

 ρ_W, ρ_S Wasser- und Steindichte [t/m³].

An den Binnenwasserstraßen haben Auswertungen von Messungen zum Schraubenstrahl ergeben, dass moderne Großmotorschiffe auf der freien Strecke Strahlgeschwindigkeiten in Sohlnähe von ca. 3 m/s erzeugen. Hierbei ist mit Kolktiefen von weniger als 0,2 m zu rechnen, die lokal auftreten und akzeptiert werden können. Die Kolktiefen beziehen sich auf eingebaute lose Wasserbausteine der Klasse LMB_{5/40} mit einer Rohdichte von 2.650 kg/m³ [MAR, 2008].

Messungen mit größeren Schiffen und theoretische Berechnungen nach dem GBB [2004] ergeben Strahlgeschwindigkeiten von bis zu 5 m/s in der Nähe der Sohle, wobei die Dicke der Deckschicht in diesen Bereichen erreicht wird. An diesen Stellen ist die Bauweise durch eine größere Kanalwassertiefe oder eine teilvergossene Deckschicht anzupassen [MAR, 2008].

Kolktiefe

Die in der nachfolgenden Abbildung 4.9 dargestellte Kolktiefe in der Sohle, die sich infolge der Propellerstrahlbelastung des Heckantriebs ergibt, berechnet sich nach RÖMISCH [1993] zu:

$$\frac{T_k}{D} = \frac{E}{B_\alpha} * \frac{\nu_0}{\sqrt{d * g * (\frac{\rho_S - \rho_W}{\rho_W})}} - \frac{h_P}{D}$$
GI. 5-18

mit

DPropellerdurchmesser[m]E= 0,71 (für ein Seeschiff mit Zentralruder)[-]= 0,42 (für ein Seeschiff ohne Zentralruder)= 0,25 (für ein Binnenschiff mit Tunnelheck und Zwillingsruder).
$$B_{\alpha}$$
Stabilitätsbeiwert für eine Kolkböschung mit Neigung α [-]= $(1,25^2 * \cos \alpha + 1,3 * \sin \alpha)^{1/2}$ [m/s] v_0 induzierte Anfangsgeschwindigkeit, Gl. 3-3 bis Gl.3-5[m/s] d Steindurchmesser[m] ρ_W, ρ_S Wasser- und Steindichte[t/m³]

Abb. 4.9: Kolktiefe T_k infolge Hecktantrieb [SCHMIDT, 1998]

4.5 Kaimauern und Umgang mit Kolken im Hamburger Hafen

Im Folgenden wird ein Überblick über die Kaimauern im Hamburger Hafen gegeben und der Umgang mit der Kolkproblematik anhand des nachfolgend vorgestellten *Hamburger Querschnitts* erläutert.

Der Hamburger Hafen befindet sich in einem stetigen Wandel. Um sich den fortwährend größer werdenden Schiffen anzupassen, hat sich der Kaimauerbau kontinuierlich weiterentwickelt. Von 1990 bis 2001 haben sich die Kaimauerlängen von 236 m, beim *Fährterminal Altona* (1990) auf 800 m, beim *Containerterminal Altenwerder 1. und 2. LP* (2001) nahezu vervierfacht. Ebenso der Geländesprung, von der Tiefe der Berechnungshafensohle bis zum Kaimauerkopf, hat sich von 20,00 m (Fährterminal Altona) auf 28,30 m (Containerterminal Altenwerder 1. und 2. LP) vergrößert [Gattermann et al., 2000].

Aktuell werden die Modernisierungsarbeiten am *Burchardkai*, der mit einer Hafensohle von NN -18,80 m für Großcontainerschiffe ausgebaut wird, durchgeführt. Eine neue Kaimauer wird im Abstand von ca. 22,00 m wasserseitig vor der bestehenden Kaimauer errichtet. Die, in drei Stufen gegliederte, Ausbaustrecke beträgt ca. 1100 m [HPA, 2009].

Für die Bauweise des *Burchardkais* wurde der sogenannte *Hamburger Querschnitt* gewählt. Dieser hat sich bei der Anwendung im Hamburger Hafen bewährt und als vorteilhaft erwiesen. Die Bauweise als überbaute Böschung mit geöffneter Hauptwand ist in Abbildung 4.10 dargestellt. Primär ist sie darauf bemessen den statischen Funktionen gerecht zu werden. Im Hinblick auf die Kolkproblematik erfüllt sie gleichzeitig wirksam ihre Funktion. Im Folgenden wird der Umgang mit der Kolkproblematik anhand von Abbildung 4.10 erläutert.

Abb. 4.10: Hamburger Querschnitt (Beispiel: Burchardkai) [HPA, 2009]

Zu erkennen ist als Hauptelement die Spundwand aus Tragbohlen (über die gesamte Tiefe bis NN -31,90 m) und Füllbohlen (ab Unterkante des Hohlraums bis NN -24,80 m), die abwechselnd eingerammt worden sind. Durch diese Bauweise entsteht über den Füllbohlen ein Spundwandfenster, durch das die Wellen in einen dahinter angeordneten Hohlraum gelangen. Wie in einer

Wellenkammer wird ihre Energie abgemindert. Die vorgelagerten Reiberohre wirken ebenso als Wellenbrecher reduzierend auf die Wellenenergie.

In regelmäßigen Abständen werden Wartungsarbeiten an den Kaimauern durchgeführt. Ob es zu Auskolkungen gekommen ist und sich die Sohltiefe verändert hat, wird dabei anhand von Peilmessungen ermittelt. Die auffälligen Bereiche werden überwacht und ggf. verfüllt.

5 Beeinflussung des Propellerstrahls

Die Geschwindigkeit im Propellerstrahl, aus dem sich die Belastungen auf die Hafenstrukturen ergeben, werden, wie anfangs in Kapitel 3 erläutert, maßgebend vom Propellerdurchmesser D und der Maschinenleistung P bzw. der Umdrehungen der Maschine n beeinflusst.

Der Ansatz für den Propellerdurchmesser D ist aufgrund der eindeutigen Abmessungen des Propellers unproblematisch. Für die Maschinenleistung P in Gleichung 3-5 bzw. die Drehzahl n in Gleichung 3-4 sind die Anteile der maximalen Leistung bzw. der maximalen Umdrehung einzusetzen, die ein Schiff aufbringt, um sich im Hafen fortzubewegen.

Zwischen den Empfehlungen für diese Leistungs- und Umdrehungsansätze sind deutliche Abweichungen, wie in der nachfolgenden Tabelle 5.1 dargestellt, erkennbar. Um die Empfehlungen besser abschätzen zu können, ist im Rahmen dieser Diplomarbeit eine umfangreiche Untersuchung anhand von realen Werten durchgeführt worden.

5.1 Ansätze für Leistungen und Umdrehungen

Die Ansätze der Maschinenleistung P bzw. der Umdrehungen der Maschine n richten sich nach den Manövern, die ein Schiff fahren kann. Die folgenden Manöver sind von der Maschine umsetzbar:

•	Max. installed power	(Maximale Leistung/Umdrehungen)
•	Full ahead – service speed	(Volle Kraft voraus)
•	Full ahead – manoevring speed	(Volle Kraft voraus – für Manöver)
•	Half ahead	(Halbe Kraft voraus)
•	Slow ahead	(Langsame Kraft voraus)
•	Dead slow ahead	(Ganz langsame Kraft voraus)

Diese Manöver beschreiben die Vorwärtsfahrt eines Schiffes. Fährt ein Schiff rückwärts gelten entsprechend die dargestellten Manöver mit *asten* (zurück) an Stelle von *ahead*. Für die Leistung *P* und die Umdrehungen *n* gibt es nach den EAU [1996] sowie den EAU [2004] Ansätze für die Manöver *Half ahead* (ca. 65-80 % der maximalen Umdrehungen) und *Dead slow ahead* (ca. 30 % der maximalen Umdrehungen). Zwischen diesen Manövern bewegen sich die Schiffe nach praktischen Erfahrungen. Für die Bemessung von Sohlsicherungen soll unter Einbeziehung von Sicherheitsgesichtspunkten 75 % der maximalen Umdrehungen und 42 % der maximalen Leistung angesetzt werden. Nach HERING ET AL. [2000] ist ein Sicherheitsfaktor von rd. 1,15 berücksichtigt worden.

Die Ansätze nach den EAU [2004] entsprechen den Angaben von den EAU [1997], für die anhand Erfahrungen von DREWES ET AL., [1995] in RÖMISCH [2002] detailliertere Ansätze vorliegen. Aus diesem Grund wird sich im Folgenden auf die Angaben in den EAU [1997] bezogen.

Des Weiteren liegt ein Ansatz der PIANC [1997] vor, der 10% der maximalen Leisung und 46 % der maximalen Umdrehungen bei Hafenmanövern empfiehlt.

Der Faktor zwischen diesen beiden Ansätzen für die Umdrehungen beträgt 1,63. Ein Ergebnis, welches für zuverlässige Abschätzungen nach RÖMISCH [2002] nicht akzeptabel ist und daher im Entwurf der PIANC [2008] diskutiert und neu formuliert wurde. Dieser sieht, wie aus Tabelle 5.1 hervorgeht, 10 bis 20 % der maximalen Leistung und 40 bis 50 % der maximalen Umdrehungen vor.

Eine Übersicht über die Ansätze ist in der Tabelle 5.1 gegeben.

Tab. 5.1:Übersicht der Ansätze von Leistungen und Umdrehungen
nach den EAU [1996], der PIANC [1997] und der PIANC [2008]
(in % zu den maximalen)

	EAU [1996]		PIANC [1997]		PIANC [2008] ²	
Manöver	Um- drehungen in [%] von n _{max}	Leistung in [%] von P _{max}	Um- drehungen in [%] von n _{max}	Leistung in [%] von <i>P_{max}</i>	Um- drehungen [%] von n _{max}	Leistung in [%] von <i>P_{max}</i>
Max. installed power			100	100	100	100
Full ahead - service speed	100	100	85-90	51-73	80-90	50-80
Full ahead – manoeuvring			57-63	18-25	70	50
Half ahead	82-87	55-65	43-48	8-11	40-60	40
Slow ahead	40-50	6-12,5	29-32	2-3	40-50	30
Dead slow ahead	30-35	3-4,3	14-16	0,3-0,4	30-40	10
Empfehlung für Hafenmanöver	75	42	46	10	40-50	10-20

² Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

5.2 Analyse der Ansätze für die Leistung und die Umdrehungen anhand von *PilotCards*

Die im vorherigen Kapitel dargestellte Problematik, der unterschiedlichen Ansätze für die Maschinenleistung und die Umdrehungen, wird im Folgenden anhand von sogenannten *PilotCards* analysiert. Die Untersuchung soll zeigen, welcher der in Tabelle 5.1 vorgestellten Ansätze am besten die Realität abbildet.

Die verwendeten *PilotCards* stammen aus Bremerhaven [SCHMIDT, 2010] sowie dem Hamburger Hafen [VORWERK, 2010] und sind dem laufenden Schiffsbetrieb zwischen 2002 und 2007 (vgl. Anhang 2) entnommen.

Für die Analyse wurden 23 Containerschiffe der Baujahre 1996 bis 2007 (vgl. Anhang 2) ausgewählt. Ein Überblick über die untersuchten Schiffe und die jeweilige *PilotCard* ist Anhang 1 zu entnehmen.

In einer *PilotCard* sind die spezifischen Angaben eines Schiffes (Schiffsabmessungen, Leergewicht (DWT = Deadweight tonnage) etc.) aufgelistet. Ebenso werden die Ansätze der Umdrehungen für die einzelnen Manöver (*von Full ahead* bis *Dead slow ahead* bzw. *Dead slow astern* bis *Full astern*) dargestellt. Der Hauptantrieb, auf den sich diese Manöverangaben beziehen, wird über seine Gesamtleistung und den entsprechenden maximalen Umdrehungen charakterisiert.

Abbildung 5.1 zeigt exemplarisch die *PilotCard* der *Emma Mærsk*. Der Hauptantrieb dieses Schiffes ist ein *SULZER – 14RT-FLEX 96C* der Firma *Wärtsilä*. Die Gesamtleistung beträgt 80.080 KW bei maximalen Umdrehungen von 102 U/min.

Abb. 5.1: PilotCard der Emma Mærsk [SCHMIDT, 2010]

Für die einzelnen Manöver von *Full ahead* bis *Dead slow ahead* bzw. *Dead slow astern bis Full astern* werden die angesetzten Umdrehungen angegeben. Diese Ansätze für die Umdrehungen der einzelnen Manöver sind maschinenspezifisch und basieren auf den Angaben des Herstellers. Bei Missachtung der Werte kann

die Maschine einen Schaden erleiden [Vorwerk, 2010]. Folglich ist davon auszugehen, dass die in den *PilotCards* angegebenen Werte die tatsächlich gefahrenden und damit realistischen Eingangsgrößen repräsentieren.

Bei der Analyse werden die Umdrehungen der einzelnen Manöver auf die Gesamtumdrehungen bezogen und auf diese Weise die jeweiligen prozentualen Anteile, wie in Tabelle 5.2 am Beispiel der *Emma Mærsk* gezeigt, errechnet. Bei langsam laufenden Motoren, wie sie in Containerschiffen eingesetzt werden, wird kein Getriebe zwischengeschaltet. Die Übertragung der Umdrehungen vom Motor auf den Propeller erfolgt direkt [MAN, 2008].

Tab. 5.2:Berechnung der prozentualen Anteile der Umdrehungen
bezogen auf die maximalen Umdrehungen für die Emma
Mærsk

Emma Mærsk		
$P_{max} = 80.080 \ KW$	[U/min]	[%] von <i>n_{max}</i>
$n_{max} = 102 U/min$		
Full ahead	65	64
Half ahead	50	49
Slow ahead	35	34
Dead slow ahead	25	25
Stop	0	0

Analog zu Tabelle 5.2 sind im Anhang 2 die übrigen prozentualen Werte aus den 23 PilotCards berechnet worden. Diese Ergebnisse werden mit den Empfehlungen der EAU [1996] und der PIANC [1997] sowie der PIANC [2008] verglichen und ausgewertet. Die Ergebnisse dieser Analyse sind getrennt nach Manövern in den nachfolgenden Abbildungen 5.2 bis 5.12 dargestellt

Die Abbildungen zeigen die untersuchten Schiffe (x-Achse) mit den jeweiligen errechneten Prozentwerten bezogen auf die maximalen Umdrehungen (y-Achse). Die Werte der Empfehlungen werden ebenfalls dargestellt.

Full ahead

Abb. 5.3: Vergleich Full ahead und PIANC [1997]

Für das Manöver *Full ahead* zeigt Abbildung 5.2, dass der Wert der PIANC [2008] (70 % der maximalen Umdrehungen) von einem Schiff bestätigt wird. Vier der 23 Schiffe überschreiten und die übrigen 18 Schiffe unterschreiten die Empfehlung. Der Ansatz der PIANC [1997] von 57 bis 63 % der maximalen Umdrehungen stimmt, wie in Abbildung 5.3 dargestellt, mit drei der 23 untersuchten Schiffe überein. Allerdings wird der Bereich von 15 der 23 untersuchten Schiffe überschritten.

Die EAU [1996] gibt keine Empfehlung für den Ansatz der Umdrehung des Manöver *Full ahead* und entzieht sich somit einer Betrachtung.

Der Wert von 85 % der maximalen Umdrehungen liegt bezüglich des Manövers *Full ahead* für alle Schiffe "auf der sicheren Seite".

Half ahead

Abb. 5.4: Vergleich Half ahead und PIANC [2008]

Abb. 5.6: Vergleich Half ahead und EAU [1996]

Bezüglich des Manövers *Half ahead*, zeigt der empfohlene Bereich der PIANC [2008] mit 40 bis 60 % der maximalen Umdrehungen die größte Übereinstimmung. 21 der 23 untersuchten Schiffe liegen in diesem Bereich, der von drei Schiffen mit 6 bzw. 7 % überschritten wird (vgl. Abb. 5.4).

Der Bereich der Empfehlung von PIANC [1997] mit 43 bis 48 % der maximalen Umdrehungen für das Manöver *Half ahead* ist viel enger und wird von 15 Schiffen überschritten. Fünf der 23 untersuchten Schiffe befinden sich im empfohlenen Bereich (vgl. Abb. 5.5).

Der Ansatz von PIANC [2008] ist nach dieser Analyse ebenso für das Manöver *Half ahead* der Empfehlung von PIANC [1997] vorzuziehen.

Die Empfehlung der EAU [1996] mit 82 bis 87 % der maximalen Umdrehungen weicht von den Ergebnissen dieser Analyse ab (vgl. Abb. 5.6).

Slow ahead

Abb. 5.7: Vergleich *Slow ahead* und PIANC [2008]

Abb. 5.8: Vergleich Slow ahead und PIANC [1997]

Abb. 5.9: Vergleich Slow ahead und EAU [1996]

Für das Manöver *Slow ahead* ist nach dieser Analyse der Wert von 50 % der maximalen Umdrehungen für alle untersuchten Schiffe eine sichere Annahme (s. Abb. 5.7). Sowohl von der PIANC [2008] als auch von den EAU [1996] sind 40 % bis 50 % der maximalen Umdrehungen empfohlen. Zehn der 23 untersuchten Schiffe entsprechen dieser Empfehlung und kein Schiff überschreitet den Bereich (Abb. 5.7 und Abb. 5.9).

Der Ansatz der PIANC [1997] mit 29 bis 32 % der maximalen Umdrehungen ist, im Hinblick auf die vorliegenden Ergebnisse, tief angesetzt. Drei der 23 untersuchten Schiffe genügen dieser Empfehlung die allerdings nach Abb. 5.8. von den übrigen 20 Schiffen überschritten wird.

Dead Slow ahead

Abb. 5.10: Vergleich *Dead slow ahead* und PIANC [2008]

Abb. 5.11: Vergleich Dead slow ahead und PIANC [1997]

Abb. 5.12: Vergleich *Dead slow ahead* und EAU [1996]

Für das Manöver *Dead Slow ahead* ist der Ansatz der EAU [1996] mit 30 bis 35 % der maximalen Umdrehungen die realistischste Empfehlung. Zehn der 23 untersuchten Schiffe liegen im empfohlenen Bereich von den EAU [1996] und ein Schiff überschreitet den Wert mit 1 % (vgl. Abb. 5.12).

Der Ansatz nach PIANC [2008] ist nach oben hin weiter gefasst (bis 40 %) und somit sicherer. Bezüglich der minimalen Überschreitung wird dieser Ansatz als weniger zutreffend bewertet (vgl. Abb. 5.10).

Die Empfehlung der PIANC [1997] mit 14 bis 16 % der maximalen Umdrehungen für das Manöver *Dead slow ahead* liegt unter den Ergebnissen und wird von allen Werten überschritten (s. Abb. 5.11). Im Sinne einer Dimensionierung befindet sich der Ansatz weit auf der "unsicheren Seite" und sollte daher im Hinblick auf die Ergebnisse nicht zu Einsatz kommen.

5.3 Auswertung und Diskussion der Ansätze für Leistung und Umdrehungen

Die Analyseergebnisse sind in Tabelle 5.3 den Ansätzen für die Umdrehungen aus Tabelle 5.1 genübergestellt. Hervorgehoben sind die Werte, die sich aus der Analyse bestätigt haben.

Tab. 5.3:Analyseergebnis im Vergleich zu den Ansätzen der
Umdrehungen nach den EAU [1996], der PIANC [1997] und der
PIANC [2008]

	Analyseergebnis (vgl. Anhang 2)	Eau [1996]	PIANC [1997]	PIANC [2008] ³
	Umdrehungen	Umdrehungen	Umdrehungen	Umdrehungen
	in [%] von	in [%] von	in [%] von	in [%] von
Manöver	n _{max}	n_{max}	n _{max}	n_{max}
Full ahead	48-83		57-63	70
Half ahead	40-67	82-87	43-48	40-60
Slow ahead	31-50	40-50	29-32	40-50
Dead slow ahead	24-36	30-35	14-16	30-40
Empfehlung für Hafenmanöver		75	46	40-50

Es hat sich gezeigt, dass die prozentualen Ansätze der maximalen Umdrehungen nach der PIANC [2008] für die Manöver *Full ahead* und *Half ahead* am besten mit den Ergebnissen übereinstimmen. Im Hinblick auf das Manöver *Slow ahead* können die Empfehlung der PIANC [2008] und die der EAU [1996] angesetzt werden. Für das Manöver *Dead slow ahead* ist die Übereinstimmung bei der Empfehlung der EAU [1996] am größten.

³ Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

Empfehlung für Hafenmanöver

Die EAU [1996] und die PIANC [1997] orientieren sich bei der *Empfehlung für Hafenmanöver* als obere Grenze am Manöver *Half ahead*. Aufgrund der unterschiedlichen Ansätze für dieses Manöver, ergeben sich als Empfehlung 46 % der maximalen Umdrehungen nach der PIANC [1997] sowie 75 % der maximalen Umdrehungen nach den EAU [1996]. In Bezug auf die Analyseergebnisse sind 67 % der maximalen Umdrehungen bezüglich des Manövers *Half ahead* anzusetzen.

Nach VORWERK [2010] und Bunde [2010] wird im Hafenbereich maximal das Manöver *Slow ahead* gefahren. In Bezug auf die vorgenommene Analyse sind demnach 50 % der maximalen Umdrehungen für den Hafenbereich zu empfehlen.

Zusammenhang zwischen Umdrehungen und Leistungen

Um eine Analyse der Leistungsansätze vorzunehmen wird der Zusammenhang zwischen Umdrehungen und Leistungen eines Propellers untersucht.

Über das Gleichsetzen von Gleichung 3-4 und 3-5 ist es möglich einen theoretischen Zusammenhang zwischen Leistung und Umdrehungen in Abhängigkeit des Durchmessers zu beschreiben. Dieser wird anhand der Daten der *Emma Mærsk* (P = 80.080 KW, n = 102 U/min, D = 9,6 m und $C_P = 1,48$ für einen freien Propeller) überprüft. Es ergibt sich für die Umdrehungen, unter Verwendung der Leistung:

$$n = \frac{C_P}{0.95*D} * \left(\frac{P}{\rho_W * D^2}\right)^{\frac{1}{3}} = \frac{1.48}{0.95*9.6} * \left(\frac{80080}{1.0*9.6^2}\right)^{\frac{1}{3}} * 60 = 92.9 \ U/min \qquad \text{Gl. 5-1}$$

bzw. für Leistung unter Verwendung der Umdrehungen:

$$P = \left(\frac{0.95}{C_P}\right)^3 * \rho_W * n^3 * D^5$$

$$= \left(\frac{0.95}{1.48}\right)^3 * 1.0 * (103/60)^3 * 9.6^5 = 105.946.98 \text{ KW}$$
GI. 5-2

Auf Basis der Daten der *Emma Mærsk* ergeben sich zwischen den errechneten und den angegebenen Werten für *n* und *P*, Abweichungen von 8,92 % bzw. 24,42 %. Aus den Gleichungen 5-1 und 5-2 geht hervor, dass *P* und *n* im Verhältnis $P \sim n^3$ zueinander stehen.

Propellergesetz

Die Leistung kann für einen Propeller mit festen Propellerblättern (Fixed Pitch Propeller, FPP) nach dem allgemeinen Propellergesetz bestimmt werden [MAN, 2009]:

$$\frac{P}{P_{max}} = \left(\frac{n}{n_{max}}\right)^3$$
Gl. 5-3

mit

Р	Propellerleistung	[kW]
P _{max}	maximale Propellerleistung	[kW]
n	Umdrehungen	[U/min]
n _{max}	maximale Umdrehungen	[U/min]

Der Zusammenhang nach Gleichung 3.3 ist für die Ansätze von den EAU [1996], der PIANC [1997] sowie dem Entwurf der PIANC [2008] in Tabelle 3.1 überprüft worden. Die erläuterte Berechnung ist in Tabelle 5.4 dargestellt.

Tab. 5.4:Überprüfung des Zusammenhangs $P [\%] = (n [\%])^3$ anhand
der Leistungs- und Umdrehungsansätze von EAU [1996],
PIANC [1997] und PIANC [2008]

	EAU [1996]		PIANC [1997]		PIANC [2008] ⁴	
Manöver	(n [%]) ³	[%] von P _{max}	(n [%]) ³	[%] von P _{max}	(n [%]) ³	[%] von P _{max}
Max. installed power			100	100	100	100
Full ahead - service speed	100	100	0,85³ = 0,61 0,90 ³ = 0,729	51 73	$0,80^3 = 0,51$ $0,90^3 = 0,729$	50 80
Full ahead – manoeuvring			$0,57^3 = 0,185$ $0,63^3 = 0,25$	18 25	$0,70^3 = 0,343$	50
Half ahead	$0,82^3 = 0,55$ $0,87^3 = 0,66$	55 65	$0,43^3 = 0,08$ $0,48^3 = 0,11$	8 11	$0,40^3 = 0,064$ $0,60^3 = 0,216$	40
Slow ahead	$0,40^3 = 0,06$ $0,50^3 = 0,125$	6 12,5	$0,29^3 = 0,02$ $0,32^3 = 0,03$	2 3	$0,40^3 = 0,064$ $0,50^3 = 0,125$	30
Dead slow ahead	$0,30^3 = 0,027$ $0,35^3 = 0,043$	3 4,3	$0,14^3 = 0,003$ $0,16^3 = 0,004$	0,3 0,4	$0,30^3 = 0,027$ $0,40^3 = 0,064$	10
Empfehlung für Hafen- manöver	$0,75^3 = 0,42$	42	0,46 ³ = 0,10	10	$0,40^3 = 0,064$ $0,50^3 = 0,125$	10-20

Für die Ansätze von den EAU [1996] und der PIANC [1997] ergeben sich aus den Umdrehungen nach Gleichung 5-3, eindeutig die entsprechende Leistung. Mit der Ausnahme des Manövers *Full ahead – service speed*, der Pianc [1997]. An Stelle von 51 % der Gesamtleistung ergibt sich 61 % der Gesamtleistung. Angenommen wird, dass es sich hierbei um einen Druck- oder Übertragungsfehler handelt.

Der Zusammenhang zwischen den Leistungen und Umdrehungen sowie die Ergebnisse der Analyse sind in Abbildung 5.13 dargestellt.

⁴ Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

Abb. 5.13: Überblick über die Analyseergebnisse für die einzelnen Manöver

Für die Ansätze der PIANC [2008] bestätigt sich der oben genannte Zusammenhang nach Gleichung 5-3 nicht. Anhand von Tabelle 5.5 werden die jeweiligen Exponenten berechnet, die an Stelle des Exponenten i = 3 in Gleichung 5-3, die Leistungen aus den Umdrehungen ergibt. Die Ergebnisse sind in Tabelle 5.5 aufgeführt.

Die Spanne für den Exponenten reicht von i = 1,0 bis 2,5.

Tab. 5.5:Ermittlung des Exponenten für den Zusammenhang zwischenUmdrehungen und Leistung nach PIANC [2008]

	Umdrehungen	Leistung	Exponent	
Manover	[%] von n_{max}	[%] von P _{max}	$i = \log_n(P)$	
Full Ahead	0,7	0,5	1,9	
Half Ahead	0,6	0,4	1,8	
	0,4	0,4	1,0	
Slow Ahead	0,5	0,3	1,7	
	0,4	0,3	1,3	
Dead Slow Ahead	0,4	0,1	2,5	
	0,3	0,1	1,9	
	0,5	0,2	2,3	
	0,4	0,1	2,5	

Das allgemeine Propellergesetz nach Gleichung 5-3 gilt für einen sich frei drehenden Propeller, der nicht beeinflusst wird (Idealbedingungen) [BUNDE, 2010]. Bei sehr starker Beeinflussung, wie beispielsweise bei Fahren durch Eis, kann i = 1 als Extrem gewählt werden. Für den Bereich dazwischen ist der Exponent den entsprechenden Bedingungen (z. B. Wind oder Strömungen ausgesetzt) anzupassen.

Somit kann die Gleichung 5-3 zu folgendem Ansatz erweitert werden:

$$\frac{P_{max}}{P} = \left(\frac{n_{max}}{n}\right)^i$$
GI. 5-4

mit

i = 1,0 (für Extrembedingungen, wie das Fahren durch Eis)

= 3,0 (für Idealbedingungen)

Die Umrechnung der prozentualen Ansätze Umdrehungen aus den *PilotCards* in die zugehörigen Leistungen ist nach Gleichung 5-4 möglich. Allerdings stellt sich die Frage, welcher Exponent für welches Manöver gewählt wird. Zur Eingrenzung und Einschätzung wird die Analyse für die Exponenten i = 1, i = 2 und i = 3 durchgeführt. Die Ergebnisse sind in Tabelle 5.6 dargestellt.

Tab. 5.6:Analyseergebnisse (für unterschiedliche Exponenten)i = 1, 2, 3) im Vergleich zu den Leistungsansätzen nach denEAU [1996], der PIANC [1997] und der PIANC [2008]

	Analyseergebnisse						
	(Ermittlung der Leistungen nach Gl. 5-4)			FAU [1996]	PIANC	PIANC	
	mit $i = 3$	mit $i = 2$	mit $i = 1$	mit $i = 1$		[2008] ⁵	
	Leistung in	Leistung in	Leistung in	Leistung in	Leistung	Leistung in	
Manöver	[%] von	[%] von	[%] von	[%] von	in [%]	[%] von	
	P _{max}	P _{max}	P _{max}	P _{max}	von P_{max}	P _{max}	
Full ahead	11,3-61,2	23,3-72,1	48,3-84,9		18-25	50	
Half ahead	6,5-30,5	16,1-45,3	40,2-67,3	55-65	8-11	40	
Slow ahead	3,1-12,5	9,8-25,0	31,3-50,0	6-12,5	2-3	30	
Dead slow ahead	1,4-3,8	5,8-11,3	24,0-33,7	3-4,3	0,3-0,4	10	
Empfehlung für Hafenmanöver				42	10	10-20	

Die Analyse hat, wie in Tabelle 5.3 aufgezeigt ergeben, dass für den prozentualen Ansatz der Umdrehungen der Entwurf der PIANC [2008] die größte Übereinstimmung zeigte. In Bezug auf die Ansätze der Leistung, wird empfohlen den Exponenten *i*, den vorherrschenden Bedingungen anzupassen. Für eine Berechnung mit einem mittleren Wert von i = 2, zeigt Tabelle 5.6 eine gute Übereinstimmung der Ergebnisse mit den Empfehlungen des Entwurfes der PIANC [2008]. Die Empfehlungen liegen außer für das Manöver *Slow ahead* in einem mittleren Bereich der Ergebnisse.

In Abbildung 5.14 ist eine Übersicht gegeben, wie am Beispiel der *Empfehlungen für Hafenmanöver* aus den Umdrehungen die jeweiligen Leistungen nach unterschiedlichen Exponenten i = 1, 2, 3 ermittelt werden können.

Eine ausführliche Darstellung aller Berechnungen und der Ergebnisse aus Tabelle 5.6 befindet sich in Anhang 2.

⁵ Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

Abb. 5.14: Übersicht über die Ermittlung der jeweiligen Leistungen aus den Umdrehungen nach unterschiedlichen Exponenten i = 1, 2, 3 am Beispiel der *Empfehlungen für Hafenmanöver*

6 Bemessung am Beispiel der Emma Maersk

Die *Emma Mærsk* (Abb. 6.1) ist das Typschiff der *Emma-Mærsk-Klasse*, die aus acht baugleichen Containerschiffen der dänischen Reederei *Mærsk* besteht. Mit 11.000 TEU (twenty-foot-equivalent containers, Maß für Größe von Containerschiffen) ist sie nach der *MSC Daniela* (14.000 TEU) das größte Containerschiff der Welt. Die Länge beträgt 397,71 m und die Breite 56,40 m. Die Tragfähigkeit DWT (dead weight tonnage) der *Emma Mærsk* liegt bei 156.900 t.

Abb. 6.1: Emma Mærsk [CAPTAIN, 2010]

Der Hauptmotor (*Wärtsilä Sulzer 14RT-Flex96C*) ist ein Zweitaktdieselmotor, des finnischen Herstellers *Wärtsilä Sulzer* und mit seinen 14 Zylindern einer der leistungsstärksten Kolbenmaschinen weltweit. Die Leistung beträgt 80.080 KW bei 102 U/min. Der Heckpropeller hat einen Durchmesser von 9,60 m.

In diesem Kapitel werden die theoretischen Ansätze dieser Diplomarbeit am Beispiel der *Emma Mærsk* auf die Anwendbarkeit in der Praxis überprüft.

6.1 Induzierte Anfangsgeschwindigkeit:

Die induzierte Anfangsgeschwindigkeit nach Gleichung 3.4 errechnet sich für die *Emma Mærsk* zu:

$$v_0 = 0.95 * \frac{102}{60} * 9.6 = 15.50 \text{ m/s}$$
 Gl. 6-1

Wird die induzierte Anfangsgeschwindigkeit nach der Leistung berechnet, ergibt sich für die induzierte Anfangsgeschwindigkeit anhand Gleichung 3-5 ein Wert von:

$$v_0 = 1,48 * \left(\frac{80.080}{1,0*9,6^2}\right)^{\frac{1}{3}} = 14,12 \text{ m/s}$$
 Gl. 6-2

mit

 $C_P = 1,48$ (für einen freien Propeller (vgl. Abb. 6.2))

Für den in NIELSON [2005] angegebenen mittleren Wert von $C_P = 1,37$ ergibt sich zu $v_0 = 13,07$ m/s.

Abb. 6.2: Heck der *Emma Mærsk* [SHIPMARINE, 2010]

Der internationale Ansatz berücksichtigt den eingeschnürten Querschnitt. Dieser berechnet sich nach Gleichung 3-16 zu:

$$D_0 \ge \frac{9.6}{\sqrt{2}} = 6,79 \text{ m.}$$
 GI. 6-3

Mit diesem eingeschnürten Querschnitt ergibt sich eine induzierte Anfangsgeschwindigkeit nach Gleichung 3-15 von:

$$v_0 = 1,15 * \left(\frac{80.080}{1,0*6,79^2}\right)^{\frac{1}{3}} = 13,82 \text{ m/s}$$
 GI. 6-4

6.2 Maximale Geschwindigkeiten in den Zonen der Strahlentwicklung

Für die weitere Berechnung wird, um auf der "sicheren Seite zu liegen", der maximale Wert von $v_0 = 15,50 \text{ m/s}$ angenommen (nach Gleichung 6.1). Die Strahlentwicklung ist, wie in Kapitel 3.2, erläutert in unterschiedliche Zonen aufgeteilt. In der ersten Zone ist die maximale Geschwindigkeit entlang der x-Achse konstant und berechnet sich nach Gleichung 3-17 zu:

$$v_{x,max} = v_0 = 15,50 \text{ m/s}$$
 Gl. 6-5

Der Bereich dieser Zone beträgt $x_0 = 2.6 * D = 2.6 * 9.6 = 24.96$ m.

Für den Bereich des entwickelten Strahls im Bereich der zweiten Zone mit x > 24,96 m kann die maximale Geschwindigkeit entlang der x-Achse in Abhängigkeit von x nach Gleichung 3-21 wie folgt bestimmt werden:

$$v_{x,max} = 2.6 * \left(\frac{x}{D}\right)^{-1} * v_0 = 386,88 * x^{-1}$$
 Gl. 6-6

Wie in der folgenden Abbildung 6.3 dargestellt, beginnt die Funktion mit dem maximalen Wert von $v_0 = 15,50 \text{ m/s}$ bei x > 24,96 m und nimmt mit anwachsendem Abstand *x* zum Propeller ab.

Abb. 6.3: Verlauf von v_{max} in Zone 2 und 3

Im Hafenbereich erreicht der Strahl schnell die Zone 3. Die Strahlausbreitung wird durch den Wasserspiegel, die Sohle und eine seitlichen Begrenzung behindert. Nach Gleichung 3-23 berechnet sich $v_{x,max}$ in diesem Bereich zu:

$$v_{x,max} = A * \left(\frac{x}{D}\right)^{-a} * v_0 = 1,735 * \left(\frac{x}{9,6}\right)^{-0,3} = 15,50 \text{ m/s}$$
 Gl. 6-7

mit

a = 0,3 Annahme: seitliche Strahlbegrenzung durch Sohle, Wasserspielgel und Kaiwand

A = 1,735 nach Gl. 3-25 (Heckpropeller mit Zentralruder (vgl. Abb. 6.2))

$$A = 1,88 * e^{\left(-0,161 * \frac{h_P}{D}\right)}$$

mit

 $h_P = \frac{9,60}{2} + 0 = 4,80 \text{ m}$ (Ungünstigste Annahme für Abstand Propellerachse zur Sohle, Kiel auf Grund)

Die Abnahme von $v_{x,max}$ in der Zone 3 ist für den Fall, dass der Strahl direkt von Zone 1 in Zone 3 übergeht in Abbildung 6.3 dargestellt. Durch die seitliche Behinderung, der Sohle und des Wasserspiegels wird der Querschnitt verkleinert und die Geschwindigkeit ist gegenüber der freien Strahlausbreitung in Zone 2 erhöht.

6.3 Maximale Sohlgeschwindigkeit

Die maximale Sohlgeschwindigkeit berechnet sich nach Gl. 3-27 für die *Emma Mærsk* zu:

$$v_{max,So} = 0.95 * \frac{102}{60} * 0.71 * \frac{9.60^2}{4.80} = 22.02 \text{ m/s}$$
 GI. 6-8

mit

E = 0,71 für ein Seeschiff mit Zentralruder (vgl. Abb.6.2)

 $h_P = 4,80 \text{ m}$ Annahme für Abstand Propellerachse zur Sohle

Die beiden Bedingungen, dass die *Emma Mærsk* mit ihrem Kiel den Grund berührt ($h_p = 4,80$ m) und die maximalen Umdrehungen (n = 102 U/min) im Hafen fährt, werden nicht auftreten. Sie sollen als Extremwert nur einen theoretischen Grenzwert darstellen.

Auswirkungen der unterschiedlichen Umdrehungsansätze

Aus den unterschiedlichen Ansätzen für die Umdrehungen der *Empfehlung für Hafenmanöver* in der Tabelle 3.1, ergeben sich nach Gleichung 3-27 die folgenden maximalen Sohlgeschwindigkeiten:

für die EAU [1996]

$$v_{max,So} = 0.95 * \frac{0.75*102}{60} * 0.71 * \frac{9.60^2}{4.80} = 16.52 \text{ m/s}$$
 Gl. 6-9

für die PIANC [1997]

$$v_{max,So} = 0.95 * \frac{0.46*102}{60} * 0.71 * \frac{9.60^2}{4.80} = 10.13 \text{ m/s}$$
 GI. 6-10

für die PIANC [2008]

$$v_{max,So} = 0.95 * \frac{0.50 * 102}{60} * 0.71 * \frac{9.60^2}{4.80} = 11.01 \text{ m/s.}$$
 Gl. 6-11

Die Bedeutung der Ansätze wird anhand der Ergebnisse mit Unterschieden bis 5,5 m/s verdeutlicht.

6.4 Erforderlicher Steindurchmesser

Für den erforderlichen Steindurchmesser $D_{r,0}$ in HANSEN [1985] ergibt sich nach Gleichung 4-18:

$$D_{r,0} = \sqrt[3]{\frac{0.062 * v^6}{0.245 * 2.650}} = 0.04574 * v^2$$
Gl. 6-12

Die Abschätzung der Steingröße bei weitgehend böschungsparallelem Strömungsangriff nach Gleichung 4-19, mit Berücksichtigung des Faktors nach ISBASH im GBB [2004], ergibt:

$$D_{50} = 0.7 * 1 * \frac{v^2}{9.81} * \frac{1}{\frac{2.650 - 1.0}{1.0}} = 0.0432 * v^2$$
 Gl. 6-13

mit

mit

 $C_{B\ddot{o}} = \frac{1}{k} = 1$

$$\begin{aligned} k &= \cos\beta * [1 - (\tan^2\beta/\tan^2\phi_D^{'})]^{0.5} = 1 \\ \text{mit } \beta &= 0 \text{ }^\circ \text{ und } \phi_D^{'} = 35 \text{ }^\circ \end{aligned}$$

Die erforderliche Steingröße D_{50} [m] infolge Propellerstrahlbelastung nach GBB [2004] berechnet sich nach Gleichung 4-20 zu:

$$D_{50} \ge 0.64 * \frac{v^2}{9.81} * \frac{1}{2.650 - 1} = 0.0395 * v^2$$
 Gl. 6-14

Auswirkungen der unterschiedlichen Umdrehungsansätze

Der Ansatz nach HANSEN [1985] ist maßgebend und Gleichung 6.12 wird für die weiteren Berechnungen gewählt. Es ergibt sich:

für die EAU [1996]

$$D_{r,0} = \sqrt[3]{\frac{0,062 * v^6}{0,245 * 2,650}} = 0,04574 * 16,52^2 = 12,48 m$$
Gl. 6-15

für die PIANC [1997]

$$D_{r,0} = \sqrt[3]{\frac{0.062 * v^6}{0.245 * 2.650}} = 0.04574 * 10.13^2 = 4.69 m$$
 Gl. 6-16

für die PIANC [2008]

$$D_{r,0} = \sqrt[3]{\frac{0.062 * v^6}{0.245 * 2.650}} = 0.04574 * 11.01^2 = 5.55 m$$
 Gl. 6-17

Die angesetzten Strömungsgeschwindigkeiten sind sehr hoch, sodass der Einsatz solcher Steingrößen in der Realität nicht umsetzbar ist. Es würde ein Einbau im Verbund gewählt werden. Dennoch zeigen die Ergebnisse die Auswirkungen der unterschiedlichen Leistungsansätze. Aufgrund der quadratisch einzusetzenden Strömungsgeschwindigkeit, werden die Unterschiede verstärkt und betragen fast 7,0 m.

6.5 Kolktiefe

Die in Abbildung 5.1 dargestellte Kolktiefe in der Sohle, die sich infolge der Propellerstrahlbelastung des Heckantriebs ergibt, berechnet sich nach RÖMISCH [1994] zu:

$$T_k = \left[\frac{0.71}{1.25} * \frac{v_0}{\sqrt{0.9*9.81*(\frac{2.650-1.0}{1.0})}} - \frac{4.80}{9.60}\right] * 9,60 = 1,4286 * v_0 - 4,80 \qquad \text{GI. 6-18}$$

mit

d = 0,9 m (Annahme)

 B_{α} Stabilitätsbeiwert für eine Kolkböschung mit Neigung α

$$= (1,25^2 * \cos \alpha + 1,3 * \sin \alpha)^{1/2} = 1,25 \, f \ddot{\mathrm{u}} r \ \alpha = 0$$

Auswirkungen der unterschiedlichen Umdrehungsansätze

für die EAU [1996]

$$T_K = 1,4286 * 15,5 * 0,75 - 4,80 = 11,8 m$$
 Gl. 6-19

für die PIANC [1997]

$$T_K = 1,4286 * 15,5 * 0,46 - 4,80 = 5,39 m$$
 Gl. 6-20

für die PIANC [2008]

$$T_K = 1,4286 * 15,5 * 0,5 - 4,80 = 6,27 m$$
 Gl. 6-21

Aufgrund der extremen Annahmen für h_p ergeben sich sehr tiefe Kolke. Die Tiefen sind um den Abstand zwischen Kiel und Sohle zu verringern. Allerdings zeigen die Ergebnisse den maßgeblichen Einfluss des Ansatzes für die Umdrehungen. Es ergeben sich Unterschiede von 6,41 m.

6.6 Mindestabmessungen

In Hinblick auf Kapitel 4.3.6 ergeben sich für die Mindestmaße der Befestigungen der Schutzmaßnahmen vor einer Kaimauer für den Heckpropeller (D = 9,6 m), die nachfolgenden Werte in Zusammenhang mit Abbildung 4.8:

Normal zum Kai:	L_N	= 3 bis $4 * D + \Delta RS = 4 * 9,6 + 5,0 = 43,4$ m
Längs zum Kai:	$L_{L,H,1}$	= 6 bis $8 * D + \Delta RS = 8 * 9,6 + 5,0 = 81,8$ m
	$L_{L,H,2}$	= $3 * D + \Delta RS = 3 * 9,6 + 5,0 = 33,8 \text{ m}$
	$L_{L,H,3}$	= 3 bis $4 * D + \Delta RS = 4 * 9,6 + 5,0 = 43,4$ m
	mit	
	$\Delta RS =$	5.0 m

7 Zusammenfassung und Ausblick

Die Untersuchung der Belastungen auf Hafenbaustrukturen (Kaimauern, Böschungen und Sohlen) ist aufgrund der stetig wachsenden Containerumschlagmengen und der damit verbundenen Vergrößerung der Schiffe von großer Bedeutung. Durch die neuen Belastungssituationen werden die Hafenbaustrukturen bereits gefährdet. Daher besteht Bedarf, die Standfestigkeit der vorhandenen Konstruktionen in Hinblick auf die erhöhte Belastung zu beurteilen. Zur Lösung dieser Problematik ist eine interdisziplinäre Zusammenarbeit von Geotechnikern, Mechanikern, Bauingenieuren, Maschinenund Schiffbauern erforderlich.

Das Bugstrahlruder im vorderen Teil des Schiffes wird vermehrt für eine bessere Manövrierfähigkeit eingesetzt. Durch den Heckpropeller erfolgt der Hauptantrieb eines Schiffes. Mit dem Anstieg der Schiffsgrößen ist ebenso eine Vergrößerung der Antriebsleistung und der Propellerdurchmesser verbunden, sodass die Belastung infolge des Propellerstrahls auf Kaimauern, Böschungen und Sohlen zunimmt.

An Kaimauern besteht am Fuß der Mauer die Gefahr der Auskolkung. Der Propellerstrahl trifft auf die Kaimauer und wird von dieser nach allen Seiten umgelenkt. Der nach unten gerichtete Wandstrahl erreicht im Fußbereich der Wand die Hafenbeckensohle und wird wiederum umgelenkt. In diesem und dem weiteren Bereich der Sohle kann es zu Kolken kommen. Bemessungsrelevant ist hier die maximale Geschwindigkeit des umgelenkten Propellerstrahls an der Sohle.

Trifft der Propellerstrahl auf eine Böschung, ist der für die Bemessung relevante Punkt zu lokalisieren und die maximale Geschwindigkeit zu ermitteln. Der Punkt, an dem der Propellerstrahl zuerst auf die Böschung trifft, oder an dem die Propellerachse die Böschung erreicht, kommt für diese Betrachtung infrage.

Aus der maximalen Strömungsgeschwindigkeit v_{max} errechnet sich die erforderliche Steingröße zum Schutz der Kaimauer oder der Böschung. Nach GBB [2004] erfolgt der Ansatz von v_{max} quadratisch und hat somit maßgeblichen Einfluss.
Die maximale Geschwindigkeit wird nach der Theorie von ALBERTSON ET AL. [1948] in BLAAUW und VAN DE KAA [1978] in Abhängigkeit der induzierten Anfangsgeschwindigkeit v_0 errechnet.

Unter Berücksichtigung der Umdrehungen des Propellers berechnet sich v_0 nach den EAU [2004]:

	$v_0 = 0.95 * n * D$	Gl. 7-1
mit		
n	Umdrehungen des Propellers	[U/min]
D	Propellerdurchmesser	[m].

In Abhängigkeit der Propellerleistung gilt nach den EAU [2004]:

$$v_0 = C_P * \left(\frac{P}{\rho_W * D^2}\right)^{\frac{1}{3}}$$
 Gl. 7-2

mit

 C_P = 1,48 für einen freien Propeller[-]= 1,17 für einen ummantelten Propeller.PPropellerleistung[kW] ρ_W Dichte des Wassers[t/m³]

Aus Gleichung 7-1 und 7-2 geht hervor, dass v_0 maßgeblich von der Leistung bzw. den Umdrehungen beeinflusst wird. Hierbei ist entscheidend mit welcher tatsächlichen Leistung bzw. tatsächlichen Umdrehungen (in [%] von der maximalen) sich ein Schiff während eines Manövers im Hafen fortbewegt.

Die prozentualen Empfehlungen für die Leistung und die Umdrehungen nach den EAU [1996] und der PIANC [1997] sowie der PIANC [2008] sind in Tabelle 7.1 und Tabelle 7.2 dargestellt. Auffällig ist, dass die Ansätze erheblich voneinander abweichen.

Tab. 7.1:Ansätze für die Anzahl der Umdrehungen [EAU, 1996; PIANC,1997 und PIANC, 2008] und Ergebnisse der Analyse

	T	1		1
	EAU [1996]	PIANC [1997]	PIANC [2008]*	Analyseergebnis
	Umdrehungen	Umdrehungen	Umdrehungen	Umdrehungen
	in	in	in	in
Manöver				
	[%] von n_{max}	[%] von n_{max}	[%] von n_{max}	[%] von n_{max}
	L'I mux	L'II max	ind indus	L'I Mux
Full aboad		57.62	70	10 02
ruii aneau		57-05	10	40-03
Half ahead	82-87	43-48	40-60	40-67
Slow ahead	40-50	29-32	40-50	31-50
Dead slow ahead	30-35	14-16	30-40	24-36
Empfehlung für	75	40	40.50	50
Hafenmanöver	/5	46	40 -50	50

^{*}Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

Tab. 7.2:Ansätze für die Leistung [EAU, 1996; PIANC, 1997 und
PIANC, 2008]

	Eau [1996]	PIANC [1997]	PIANC [2008]*
NA-m Xiven	Leistung in	Leistung in	Leistung in
Manover	[%] von P_{max}	[%] von P_{max}	[%] von P_{max}
Full ahead		18-25	50
Half ahead	55-65	8-11	40
Slow ahead	6-12,5	2-3	30
Dead slow ahead	3-4,3	0,3-0,4	10
Empfehlung für Hafenmanöver	42	10	10-20

Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

Es ist eine Analyse durchgeführt worden, die zeigen soll, welcher der in den Tabellen 7.1 und 7.2 vorgestellten Ansätze für P und n am besten die Realität abbildet.

Die Daten sind sogenannten *PilotCards* entnommen. *Pilotcards* enthalten die schiffsspezifischen Angaben und sind von den Schiffsführern in den Häfen zu erstellen. Abbildung 7.1 zeigt einen Ausschnitt der *PilotCard* der *Emma Mærsk*. Dargestellt ist der eingesetzte Motor mit einer Hauptleistung P_{max} von 80.080 KW und einer maximalen Drehzahl n_{max} von 102 U/min. Die Umdrehungen für die einzelnen Manöver sind ablesbar. Bei Missachtung der Werte kann die Maschine einen Schaden erleiden [Vorwerk, 2010]. Folglich ist davon auszugehen, dass die in den *PilotCards* angegebenen Werte die tatsächlich gefahrenen sind und damit reale Eingangsgrößen repräsentieren.

	PROPULS	SION		
Main Engine: SULZER - 14RT-FLEX9	6C	80080 kW		102 RPM
Maneuvering Engine Order	Rpm	Speed in	n knots	
		Loaded	Ballast	
Full Ahead	65	16,6	16,9	
Half Ahead	50	12,8	13	
Slow Ahead	35	9	9,1	
Dead Slow Ahead	25	6,4	6,5	
Stop	0	0	0	
Dead Slow Astern	25			
Slow Astern	35	Minimum no. o	f consecutive starts	12
Half Astern	50	Minimum RPM	:	25
Full Astern	65	No critical engi	ne RPM	-

Abb. 7.1: Ausschnitt aus der *PilotCard* der *Emma Mærsk*

Um die Ansätze mit den in Tabelle 7.1 aufgezeigten prozentualen Werten der EAU [2004] und der PIANC [1997] bzw. der PIANC [2008] zu vergleichen, werden sie in Bezug zur maximalen Umdrehung n_{max} gesetzt.

Die Analyse wurde anhand von 23 Containerschiffen der Baujahre 1996 bis 2007 durchgeführt. Die Ergebnisse sind in der letzten Spalte der Tabelle 7.1 aufgezeigt. In den übrigen Spalten sind die Ansätze hervorgehoben, welche durch diese Ergebnisse bestätigt werden konnten.

Zusammenhang zwischen Leistung und Umdrehungen

Um einen Vergleich der Leistungsansätze in Tabelle 7.2 vorzunehmen, wurde der Zusammenhang zwischen Leistung und Umdrehungen untersucht.

Die Leistung kann für einen Propeller mit festen Propellerblättern (*Fixed Pitch Propeller, FPP*) nach dem allgemeinen Propellergesetz bestimmt werden [MAN, 2009]:

$$\frac{P}{P_{max}} = \left(\frac{n}{n_{max}}\right)^3$$
GI. 7-3

mit

P _{max}	maximale Leistung	[kW]
Р	Leistung	[kW]
n _{max}	maximale Umdrehungen	[U/min]
n	Umdrehungen	[U/min]

Es konnte nachgewiesen werden, dass zwischen Tabelle 7.1 und 7.2 der Zusammenhang nach Gleichung 7-3 für die Empfehlungen der EAU [1996] und der PIANC [1997] besteht.

Für die Ansätze der PIANC [2008] liegt ein anderer Zusammenhang vor. Die Spanne des Exponenten *i* zur Berechnung der prozentualen Leistungen (Tab. 7.2) aus den prozentualen Umdrehungen (Tab. 7.1) reicht von i = 1,0 bis 2,5.

Das allgemeine Propellergesetz nach Gleichung 7-3 gilt für einen sich frei drehenden Propeller, der nicht beeinflusst wird (Idealbedingungen) [BUNDE, 2010]. Für den Einsatz in der Praxis ist der Exponent *i* anzupassen. Bei nahezu idealen Bedingungen ist Gleichung 7-3 mit i = 3 ansetzbar. Wird i = 1 gesetzt, so repräsentiert dies besonders erschwerende Bedingungen, wie beispielsweise das Fahren durch Eis [BUNDE, 2008]. Für den Bereich dazwischen ist der Exponent den entsprechenden Bedingungen, beispielsweise resultierend aus den vorherrschenden Wind- und Strömungsbedingungen, anzupassen.

Der allgemeine Zusammenhang zwischen Leistung und Umdrehung lautet demnach:

$$\frac{P_{max}}{P} = \left(\frac{n_{max}}{n}\right)^i$$
GI. 7-4

mit

i = 1,0 (für Extrembedingungen)

= 3,0 (für Idealbedingungen)

Tab. 7.3:Analyseergebnisse für unterschiedliche Exponenten i = 1, 2, 3im Vergleich zu den Leistungsansätzen nach den EAU [1996]der PIANC [1997] und der PIANC [2008]

	Ar (Ermittlung d	nalyseergebnis er Leistungen	se nach GL 3-4)		PIANO	PIANO
	mit $i = 3$	mit $i = 2$	mit $i = 1$	EAU [1996]	[1997]	[2008]*
Manöver	Leistung in [%] von P _{max}					
Full ahead	11,3-61,2	23,3-72,1	48,3-84,9		18-25	50
Half ahead	6,5-30,5	16,1-45,3	40,2-67,3	55-65	8-11	40
Slow ahead	3,1-12,5	9,8-25,0	31,3-50,0	6-12,5	2-3	30
Dead slow ahead	1,4-3,8	5,8-11,3	24,0-33,7	3-4,3	0,3-0,4	10
Empfehlung für Hafen- manöver				42	10	10-20

^{*}Der Ansatz nach PIANC [2008] befindet sich noch im Entwurfsstadium und wurde auf Basis der beiden Ansätze von den EAU [1996] und der PIANC [1997] entwickelt.

Bei der Umrechnung der prozentualen Ansätze der Umdrehungen aus den *PilotCards* stellt sich die Frage, welcher Exponent für welches Manöver gewählt wird. Zur Abschätzung wird die Ermittlung der Leistung für die Exponenten i = 1, i = 2 und i = 3 durchgeführt. Die Ergebnisse sind in Tabelle 7.3 dargestellt.

Die Analyse hat, wie aus Tabelle 7.1 hervorgeht, ergeben, dass für den prozentualen Ansatz der Umdrehungen der Entwurf der PIANC [2008] die größte Übereinstimmung zeigt. In Bezug auf die Ansätze der Leistung, wird empfohlen den Exponenten *i*, den vorherrschenden Bedingungen anzupassen. Für eine Berechnung mit einem mittleren Wert von i = 2, zeigt Tabelle 7.3 eine gute Übereinstimmung der Ergebnisse mit den Empfehlungen des Entwurfes der PIANC [2008]. Die Empfehlungen liegen außer für das Manöver *Slow ahead* in einem mittleren Bereich der Ergebnisse.

Die Analyse basiert auf den Daten von 23 Containerschiffen, der Baujahre 1996 bis 2007. Die *PilotCards* stammen aus dem Hamburger Hafen und dem Bremerhaven und sind dem laufenden Schiffsbetrieb zwischen 2002 und 2007 entnommen. Um die Ergebnisse zu unterstützen könnte eine größere Anzahl von Schiffen in weiteren Häfen untersucht werden. Da eine repräsentative Auswahl von Containerschiffen getroffen wurde, wird davon angenommen, dass sich die Ergebnisse im Wesentlichen bestätigen werden und übertragbar sind.

Es ist möglich, die Ergebnisse mit denen von Containerschiffen der vorherigen Generationen zu vergleichen und zu ermitteln, ob ein Trend erkennbar ist.

Im Rahmen dieser Arbeit ist eine Möglichkeit aufgezeigt worden, einen Zusammenhang zwischen Umdrehungen und Leistungen herzustellen, der sich anhand der Empfehlungen von den EAU [1996] und der PIANC [1997] bestätigt hat. Dieser Zusammenhang zwischen Leistung und Umdrehung wurde differenzierter untersucht und mit Einführung einen Exponenten *i* allgemeiner gefasst. Der Bereich, in dem sich *i* bewegt, konnte in dieser Arbeit eingegrenzt werden. Die Frage, ob und wenn wie sich der Exponent *i* optimal an die Bedingungen anpassen lässt, bleibt bestehen und könnte beispielsweise anhand von Modelversuchen detaillierter betrachtet werden.

Literaturverzeichnis

[Albertson et.al. 1948]	<i>Diffusion of submerged jets,</i> M.L. Albertson, Y.B. Dai, R.A. Jenson, & H. Rouse, Transactions of the American Society of Civil Engineers (A.S.C.E.), Paper No 2409, Vol. 115, pp.639-664
[BLAAUW und VAN DE KAA, 1978]	Erosion of bottom and sloping banks caused by the screw race of manoevring ships, H. G. Blaauw, und E. J., Van De Kaa, paper presented at the 7th International Harbour Congress (May 22-26, 1978) Antwerp, pp. 1-9
[Brinkmann, 2005]	Seehäfen – Planung und Entwurf, Brinkmann, B., Fachhochschule Nordostniedersachsen, Standort Buxtehude, Fachbereich Bauingenieurwesen, Harburger Str. 6/7, 21614 Buxtehude, pp. 352-355
[Blokland, 1994]	Propeller jet against quay wall. Current velocity and erosion measurements, (in Dutch) T. Blokland, Rotterdam public works, Harbour Engineering Division, report R94.038
[DIN EN 13383, 2009]	<i>Wasserbausteine Teil 1 und Teil 2</i> , Deutsches Institut für Normung e. V. (Hrsg.), Beuth Verlag, Berlin
[DREWES ET AL., 1995]	Propellerstrahlinduzierte Erosionen im Hafenbau und Möglichkeiten zum Sohlschutz für den Burchardt-Kai im Hafen Hamburg, U. Drewes, Prof. DrIng. habil. K. Römisch, DiplIng. E.Schmidt, Leichtweiß-Institut für Wasserbau, TU Braunschweig

[EAU, 1997]EmpfehlungendesArbeitsausschusses"Ufereinfassungen" Häfen und Wasserstraßen

- [EAU, 2004]EmpfehlungendesArbeitsausschusses"Ufereinfassungen"HäfenundWasserstraßen, 10.Auflage, pp. 261-271Auflage, pp. 261-271
- [EAO, 2002]EmpfehlungzurAnwendungvonOberflächenabdichtungen,MitteilungsblattNr.85der Bundesanstalt für Wasserbau,Kußmaulstraße17, 76187 Karlsruhe
- [FÜHRER, ET AL., 1977] Effects of modern ship traffic on inland- and oceanwaterways and their structures, M. Früher, Prof. Dr.-Ing. habil. K. Römisch, Publication of 24th International Navigation Congress (PIANC), Leningrad

 [GBB, 2004]
 Grundlagen zur Bemessung von Böschungs- und Sohlensicherungen an Binnenwasserstraßen, Mitteilungsblatt Nr. 87, Bundesanstalt für Wasserbau (BAW), Kußmaulstraße 17, 76187 Karlsruhe, pp. 59-69, 87-88, 93

- [GATTERMANN ET AL., 2000] Innovativer Kaimauerbau im Hamburger Hafen auf der Grundlage von Erfahrungen, Messungen und Berechnungsmodellen, Dr. J. Gattermann, Institut für Grundbau und Bodenmechanik, TU Braunschweig, Prof. Dr. G. Maybaum, Rodatz und Partner, Beratende Ing. für Geotechnik GmbH, Braunschweig, Dr. C. Miller, Strom- und Hafenbau, Freie & Hansestadt Hamburg, Prof. Dr. W. Rodatz, Institut für Grundbau und Bodenmechanik, TU Braunschweig,
- [HANSEN, 1985] Wasserbausteine im Deckwerksbau Bemessung und Konstruktion, Dr.-Ing. Uwe A. Hansen, Griebelstraße 26, 2240 Heide, pp. 34-40, 83

[HACKMANN, 1997]Einfluss geneigter Kaiwände auf das Kolkverhalten
der Hafensohle infolge des Bugstrahlruders,
Studienarbeit am Leichtweiß-Institut für Wasserbau,
TU Braunschweig,

[HERING ET AL, 2000] Lastannahme für Kolkschutzbemessungen, W. Hering, Prof. Dr.-Ing. habil. K. Römisch, in Hansa– Schifffahrt – Hafen – 137 Jahrgang – 2000 – Nr .10

- [HPA, 2009] Ausbau CTB Burchardkai Liegeplatz 3 und 4, 1. Bauabschnitt, Informationsblatt (vom 19.08.2009) der Hamburg Port Authority, Neuer Wandrahm 1-4, 20457 Hamburg,
- [KAYSER, 2006] Zur Handhabung der neuen Norm DIN EN 13383 für Wasserbausteine und deren Umsetzung in einer Steinbemessung, Kayser, J, Die Binnenschifffahrt 1/2006, Bundesanstalt für Wasserbau, Kußmaulstraße 17, 76187 Karlsruhe
- [KNIESS, 1977] Bemessung von Schüttstein-Deckwerken im Verkehrswasserbau, Teil 1: Lose Steinschüttungen, Dipl.-Ing. H.-G Kniess, Mitteilungsblatt Nr. 42 der Bundesanstalt für Wasserbau, Kußmaulstraße 17, 76187 Karlsruhe

[KRAATZ, 1989] Flüssigkeitsstrahlen, Technische Hydromechanik Band 2, W. Kraatz, VEB-Verlag f. Bauwesen, Berlin

[LINDNER, 1997] Reduktion der propellerstrahlbedingten Erosionen an Hafensohlen durch Neigung der Kaiwand und Strahllenker im Sohlbereich, cand.-ing. Lindner, M., Diplomarbeit am Leichtweiß-Institut für Wasserbau, TU Braunschweig

[Mag, 1993]	Merkblatt zur Anwendung von geotextilen Filtern an Wasserstraßen, Bundesanstalt für Wasserbau, Kußmaulstraße 17, 76187 Karlsruhe
[Mak, 1989]	Merkblatt zur Anwendung von Kornfiltern an Wasserstraßen Bundesanstalt für Wasserbau, Kußmaulstraße 17, 76187 Karlsruhe
[Man, 2009]	MAN B&W S50MC-C7, Project Guide Camshaft Controlled Two stroke Engines, MAN Diesel, Teglholmsgade 41, 2450 Kopenhagen SV, Denmark
[Mar, 2008]	Merkblatt zur Anwendung von Regelbauweisen für Böschungs- und Sohlensicherungen an Binnenwasserstraßen, Bundesanstalt für Wasser- bau, Kußmaulstraße 17, 76187 Karlsruhe, pp. 1-26
[Mav, 2008]	Merkblatt zur Anwendung von hydraulisch- und bitumengebundenen Stoffen zum Verguss von Wasserbausteinen an Wasserstraßen, Bundes- anstalt für Wasserbau, Kußmaulstraße 17, 76187 Karlsruhe
[NIELSEN, 2005]	Bowthruster-Induced Damage, A physical model study on bowthruster-induced flow, Master of Science thesis, canding. B. Nielsen, TU Delft University of Hydrology, pp. 3-13
[Oebius, 2000]	Charakterisierung der Einflussgrößen Schiffsumströmung und Propellerstrahl auf die Wasserstraßen, Oebius, Technische Universität Berlin, Mitteilungsblatt Nr. 82 der Bundesanstalt für Wasserbau, Kußmaulstraße 17, 76187 Karlsruhe
[PIANC, 1997]	Guidelines for the design of armoured slopes under open pilled quay walls, Report of Working Group 22,

Supplement to Bulletin no. 96-1997, Permanent international association of navigation congresses (PIANC), pp. 23, 29

[PIANC, 2008] Guidelines for berthing structures, related to thrusters, Entwurf des Berichtes der PIANC MARCOM WG 48, Permanent international association of navigation congresses (PIANC), pp. 39-41

 [RÖMISCH, 1975] Der Propellerstrahl als erodierendes Element bei An- und Anlegemanövern im Hafenbecken, Prof.
 Dr.-Ing. habil. K. Römisch, Seewirtschaft, 7, 7, pp. 431-434

[RÖMISCH, 1993] Propellerstrahlinduzierte Erosionserscheinungen in Häfen, Prof. Dr.-Ing. habil. K. Römisch, Leichtweiß-Institut für Wasserbau, TU Braunschweig, HANSA, Schifffahrt-Schiffbau-Hafen-130. Jahrgang 1993, Nr.8, pp. 62-67

[RÖMISCH, 1994] Propellerstrahlinduzierte Erosionserscheinungen, Prof. Dr.-Ing. habil. K. Römisch, Leichtweiß-Institut für Wasserbau, TU Braunschweig, HANSA, Schifffahrt-Schiffbau-Hafen-131. Jahrgang 1994, Nr.9

[RÖMISCH, 1997] Bottom attacks caused by stop-manoeuvres of ships, Prof. Dr.-Ing. habil. K. Römisch, International seminar on renovation and improvements to existing quay structures

[RÖMISCH, 2001] Scoring in front of quay walls caused by bow thruster and new measures for its reduction, Prof. Dr.-Ing. habil. K. Römisch, Leichtweiß-Institut für Wasserbau, TU Braunschweig International seminar on renovation and improvements to existing quay structures

[RÖMISCH, 2002] Input data of propeller induced velocities for dimensioning of bed protection near quay walls, Prof. Dr.-Ing. habil. K. Römisch, Leichtweiß-Institut für Wasserbau, TU Braunschweig Supplement to Bulletin no. 109-2002, pp. 5-10

- [SCHMIDT, 1998] Ausbreitungsverhalten und Erosionswirkung eines Bugpropellerstrahls vor einer Kaiwand, Dipl.-Ing. Eckhard Schmidt, Dissertation am Leichtweiss-Institut für Wasserbau der Technischen Universität Braunschweig, Mitteilungen Heft 143/1998, pp. 2-15
- [SCHOKKING, 2002] Bowthruster induced damage, cand.-ing. L. A Schokking, Master of Science thesis, TU Delft University of Hydrology, pp. 21-38
- [VOLLHEIM,1979] Modellversuche zur Entwicklung eines Bugstrahlruders, H. R. Vollheim, Schiffbauforschung, Berlin 18

sonstige Quellen (*PilotCards*, Interviews und Internet)

[BUNDE, 2010]	<i>Interview</i> , Consultant, Rossweg 9,	DiplIng PrimeServ 20457 Ham	Jürgen Hamburg, Iburg	Bunde, MAN Die	Senior esel SE,
[Captain, 2010]	http://gcapta uploads/200	in.com/mar 7/09/emma	itime/blog/v -maersk-ur	wp-conter nderway.jp	nt/ beg
[Камоме, 2010]	http://www.k propeller/fpp	amome-pro /img/photo(peller.co.jp)1.jpg	/en/produ	icts/
[SHIPMARINE, 2010]	http://www.n Maersk.jpg	zshipmarine	e.com/imag	ges/Emma	a%20
[SCHOTTEL, 2010]	Internetseite http://www.s	e der chottel.de	Firm	na s	Schottel,
[SCHMIDT, 2010]	PilotCards a	us Bremerh	aven, vgl. /	Anhang 1	
[WÄRTSILÄ, 2010]	Internetseite http://www.w	e der Firma ^v värtsilä.com	Wärtsiliä,		
[Vorwerk, 2010]	<i>PilotCards a</i> sowie <i>Interv</i> Hafenlotsenl 33, Seeman	aus dem Ha <i>iew</i> , Kapt. k bürgerschat nshöft, 2112	amburger H Klaus Vorwo ft, Hambur 29 Hambur	lafen (An erk, Chair g, Buber g	hang 1), man der ıdeyweg

ANHANG

- Anhang 1: *PilotCards* der untersuchten Schiffe
- Anhang 2: Berechnung von n in [%] von n_{max} und P in [%] von P_{max}

1. EMMA MÆRSK

Abb. A1.1: Emma Mærsk [A1.1]

			<u>F</u>	PILOT	ARD		
	Ship's nan	ne:	EMMA MA	ERSK		Call sign:	OYGR2
						IMO:	9321483
	Draught fo	rward:	10,80	м	Draught aft:	11,10]м
	Length ove	er all:	397,71 m	Breadth:	56,55 m	Bulbous Bow:	yes
				TONNAGE			
				INTERNAT	IONAL	SUEZ	
	GROSS TON	NAGE:		170794 t		N/A	
	NET TONNAG	BE:		55396 t		N/A	
	DEADWEIGH	Т:		156.900 t		-	
	407.00			000 70			
				230,70 m		<u></u>	- T
		R		_			65.40 m
56,55 m	$\otimes \otimes$			\otimes	\otimes >		, 65,40 m
1		G		0	Ŭ/ =	MERSK	<u> </u>
<u> </u>		E			/ -	1	
	Stern Thruster:			Bow Thrust	er:	Air Draught	
	2 x 1750 kW			2 x 1750 kW 2 x 25 tons		An Draught	
	2 x 25 tons						
				PROPULS	ON		
	Main Engine:	SULZER -	14RT-FLEX96	SC	80080 kW		102 RPM
	Maneuveri	na Enaine	Order	Rom	Speed in	n knots	
					Loaded	Ballast	
	1	ull Ahead		65	16,6	16,9	
		Half Ahead		50	12,8	13	
,		Now Ahead	Abood	35	9	9,1	
× .		Stop	Aneau	0	0,4	0,0	
		Dead Slow	Astern	25		v	
		Slow Astern	1	35	Minimum no. o	f consecutive starts	s 12
	}	Half Astern		50	Minimum RPM		25
		Full Astern		65	No critical engi	ne RPM	-
	Port anchor	A shacklas			Durles extration		
	Starboard anchor	4 shackles	5		ouring arrival/dep	arture, gantry cranes	
					i.e. fwd or aft of th	he nominated borth	r - if
	One 6-bladed right h	anded prop	eller.		this is not possib	le - at the vessel's mi	d ship
					section where the	cranes are less expo	osed.
	Port: Bremerhav	en					
	Date: 10-Sep-200	6			I	Henrik Ľ. Solm	er
						CAPTAIN	

2. HUAL SEOUL

Abb. A1.2: Hual Seoul [A1.2]

РО	RT E	ARRIVAL REMERHAVEN	Voj	y.No. 26
Ship's name	HUAL SP	COUL	Date	05-Sep-07
Call sign LADO6	Deadweight	9,570	_tonnes Year bu	2004 26,340 tonne
Draught Aft 7.70 m/	25 ft 3 in.	Freebo	ard 24.9 m	
Length overall <u>199,90</u> Breadth <u>32,26</u> Bolbeus bow <u>Yes</u>	m Anchor chair	1 Port <u>12</u> :	hackles, Starboard Stern_ .ckle =	<u>12</u> shackles, nilshackles, m/futhoms
61.5 m→ 6 6 6 6 5 m ←	9 m	44.0 m	Air draught 41.60 	↓
Type of engine	B&W 7S60MC	Maximum power _	19,460 BHP x	105.0 RPM
Manceuvrine copine or	der Barn/r	itch	Speed (k	nots)
maneer ang engine of			Loaded	Ballast
Full ahead	74	1	14.4	14.6
Half ahead	56	5	10.2	10.5
	38	3	6.4	6.5
Slow abead		-	2 5	3.6
Slow aband Dead slow ahead	21	1	3.5	A
Slow aband Dead slow abead Dead slow astern	21	7 Tim	3.5 se limit astern	min
Slow about Dead slow abcad Dead slow astern Slow astern	21	7 Tin 7 Tin 3 Ful	a limit astern	min 8 30s
Slow about Dead slow abead Dead slow astern Slow astern Half astern	21	7 Tim 7 Tim 8 Ful 5 Ma	a limit astern ahead to full astern k. no. of consec. starts	

3. MSC CHRISTINA

Abb. A1.3: MSC Christina [A1.3]

A STATE		Reviewed by HOD
Hanseatic Sh	Effective Date 13.10.2004	
Gmt	oh & Co KG	Revision 2
07.02.14.05 -Form 10 NAVIGATION PROC	SB PILOTAGE INFORMATION CEDURES & INSTRUCTIONS	Page 1 of 1
Vessel: MSC CHRISTINA	Call Sign: A8II7	Last Port: Not Not
Flag LIBERIA	IMO No .: 9161279- 9161297	Cargo Type / DWT: CapT.
Ship Type: CONTAINER	Year Built: 1998	Agent This Port: MS c
DIMENSIONS: Length Overa	II: 242.81 mtrs LBP: 226.70 mtrs	Breadth: 32.26 mtrs
Fore Draught Paraliel Body Length at Present D Freeboard: ๆ.นัษ Di	: 9.00 k Aft Draught: 10.5 raught: splacement: 43311 Gross	ଅଲ Air Draught: 44. ମିଳ Net Tonnage: 37,579/21891 MT
Type of Main Propulsion: SULZER	7RTA84C No Of Starts: 12 Time L	imit Euli Ahd. to Astern: 2.6 (mins
Propeller/s: No./Type: 1/FIXED R	NDED CIPLINGIA	John Stern: NIL
Rudder Type: 1/FIXED RIGHT HA	Apple C/P: yes/no Apple for Neutral	Effect
hard Over to hard Over. 20 [seco	Angle for Medical	LIIGVE
Mooring Ropes & Wire Details - S	ee Form 131	
Anchor Details		
Shackles / Metres of Cable Availal	ble – Port: 12 Shackles / 330 mtrs Sta	rboard: 12 Shackles / 330 mtrs
Status of Bridge Equipment (Tick (Operation Satisfactory]	1
Radar 1	Radar 2	Gyro 1 / / error +1
Gyro 2 / error	VHF 1	VHF 2
Sat Nav	Speed Log	Echo Sounder V
Auto Pilot	Whistle	Nav Lights
RPM Ind.	Rudder Ind.	Rate of Turn Ind.
Compass Error		
N	MANOEUVRING CHARACTERISTICS	3
	RPM	SPEED
Full Ahead - Sea Speed	88	23.2
Full Ahead - Manoeuvring	70	16.4
Half Ahead	55	13.0
Slow Ahead	45	10.6
Dead Slow Ahead	35	8.3
	26	ACTERN
Deag Slow Astern	35	DOWER
Slow Astern	. 45	TOWER
laif Astern	55	/5% UF
uli Astem	70	AHEAD
CEMARKS: [Manoeuvring Peculiar	Nes / Berning Resinctions 600.	
Not Ladder / Pilot Door available .	FORT SIDE / STBD. SIDE / BOT	H SIDES
with Engine Astern Movements: B	UW TURNS TO STARBOARD	
.		

4. MSC SHANGHAI

Abb. A1.4: MSC Shanghai [A1.4]

	ARRIVAL	/ DEPA	RTURE	PILOT CA	RD		Port:	Breme	chaven
	Ship's name	MSC	SHANGHAI				Date	3-Se	p-07
	Call sign	A8H	03	max Deadweig	ht 71949 ton	nes	Year bu	iit 20	05
	Gross Tonna Draught FV	ge VD_13.	75 m 45 ft	01 in AF	T 13.75 m	45_ft	01 in max Disp	blacement 9	5912 t
	r			euipie		9			
	MMSI no:	6360	91328	51125	MO no: 92953	373			
	Length overa	274.	67 m	Anchor chain : P	ort 13	shackles	(1 shad	kle = 27,5 m)	
	Breadth	40.0	0m	S	tarboard 14	shackles	(1 shac	kle = 15 fatho	ms)
	Bulbous bow	Yes		5	tern N/A	0 MAX.	RATE OF HEAVIN	NG 2 , 5 MIN	SHACKLE
		F	arallel WL						
	loade	ad: 124	.70m ballast	: 34.98m			A		
-			1		Ai	-Draught:			
2ª				X	42.45	5 m		1	90,2
31,04					139'	03''			
40									
	¥ 🔼						¥		
	-		100 66	-			_		_
	' 76,00 249'4	5m ' 4"	651'10	n n			\subseteq) <u> </u>
				STEERIN	G PARTICULA	RS			
	Type of rudde	er SE	MIBALANCED	Maxim	num angle 35	٠	Hard-over to have	d-over (1Pp.)	25 s
	Ruddor angle	for neutra	l effect 0.0	* P/S			Hard-over to hard	-over (2Pps.)	- 5
		1	nd Disasting of	turn right	Controllable	oitch	20		
	Thruster:	2500	KW Time de	lay full thrust: 15	55 turning rate	at zero speed:	14° /MIN		
	-		Time delay	rev./ full thrust: 30	DS not effective	above speed:	<u>5 KT</u>		
	Type of engin	e TV	O STROKE DIE	SEL M	laximum power	77600	hp (5	7075 kw)
	Г			ACTED					
	H	DDM	AHEAD	ASIERN	<u>ا</u> ا	ESTIMA		FECT	
	ł	APIM	- Nilota	INF WI		CLEARAN	ICE UNDER KEEL	SPEED	DRAFT INCREASE
	DEAD SLOW	31	7.30	31		ULL I U		4kt	0.054m
	SLOW	52	12.25	52		1	2,90m	6kt	0.133m
	HALF	70	16.49	70				8kt 6kt	0.104m
	SEA FULL	104	24.56			7	,25m	8kt	0.201m
	*WHEN O	NE (1) C	YLINDER IS MIS	FIRING,M/E SHO	ULD NOT BE	OPERATED	ABOVE 88 R	PM.	
	A			CHECKED IF	ABOARD AND	READY	Comerce surlay	-	
	Arichors _		C				Compass system		
	Whistle		LxJ	Engine telegra	iphs	LxJ	Constant gyro -/		<u>. </u>
	Radar 3cm		10cm 🗶	Steering gear		X	VHF		LxJ
	ARPA _		X	Numb	er of powor		Electronic positi	on	_
	Speed log	x	Doppler : yes / no	units	operating	x	fixing system		[X]
	Wate	r speed	X	Indicators:	Rudder	X	Type GP:	S/ECDIS	
	Grou	nd speed	X		Rpm/pitch	x			
	Dual-	axis	x		Rate of turn	X			

5. HYUNDAI BRAVE

Abb. A1.5: Hyundai Brave [A1.5]

Port : Call sign : 3EM Gross Ton : 94,51	Arr.				
Port : Call sign : 3EM Gross Ton : 94,51	Art.		Voy. No. :		
Call sign : 3EM Gross Ton : 94,51	175		Dep.	Date : 2	20
Gross Ton : 94,51	12.5	Flag :	PANAMA	Year Bui	ilt : 2007
	IMT	Net Ton	: 51,638 MT	Deadweig	ght : 99,123
Draft Aft: m	ı cm	Fwd :	m cm	Displacement	<u>nt</u> :
	339.62m		•	·r	· – – · · · · · · · · · · · · · · · · ·
94.6 m	***; T	245.02m	<hr/>		
45.6 m			A.	an S	ĽĘ
			-		62,:
				늭	
Dre(1 12.7		8.600	O TEU		8
1. Draft 47.5	2				
		Ship's	particulars		
Length overall	: 339.62	m	Anchor chai	n : Port	14 shackles
Breadth	: 45.6	m		Stbd	13 shackles
Depth	24.6	m		(1 shad	kle: 27.5 m)
Type of Engine	· HUNDAI – V	WARTSILA 1	4RT - FLEX 96C		
Type of Engine Max. Power : 10	: HUNDAI – V 08,926 BHP X	WARTSILA 1 102RPM	4RT – FLEX 96C	14	
Type of Engine : Max. Power : 10 Engine Order	: HUNDAI – V 08,926 BHP X RPM	WARTSILA 1 102RPM	4RT – FLEX 96C Spee	d (knots)	Inlinet
Type of Engine Max. Power : 10 Engine Order Nav. Full abead	: HUNDAI – V 08,926 BHP X RPM	WARTSILA 1 102RPM	4RT – FLEX 96C Spee Laden 28 1	d (knots) B	Ballast 29.2
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead	: HUNDAI – V 08,926 BHP X RPM 102 58	WARTSILA 1 102RPM	4RT – FLEX 96C Spee Laden 28.1 16.8	d (knots)	Ballast 29.2 17.9
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead	: HUNDAI – V 08,926 BHP X RPM 102 58 48	WARTSILA 1 102RPM	4RT – FLEX 96C Spee Laden 28.1 16.8 13.3	d (knots) B	Ballast 29.2 17.9 14.2
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead	: HUNDAI – V 08,926 BHP X RPM 102 58 48 40	WARTSILA 1 102RPM	4RT – FLEX 96C Spee Laden 28.1 16.8 13.3 10.5	d (knots) B	Ballast 29.2 17.9 14.2 11.2
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead	: HUNDAI – V 08,926 BHP X RPM 102 58 48 40 3 31	WARTSILA 1 102RPM	4RT - FLEX 96C Spee 28.1 16.8 13.3 10.5 7.9	d (knots) B	Ballast 29.2 17.9 14.2 11.2 8.5
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern	: HUNDAI – V 08,926 BHP X 102 58 48 40 5 1 31 1 31	WARTSILA 1 102RPM	4RT - FLEX 96C Spee Laden 28.1 16.8 13.3 10.5 7.9 ering Full shead to f	d (knots) B	Ballast 29.2 17.9 14.2 11.2 8.5 min 07 sec
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern	: HUNDAI - V 08,926 BHP X 102 58 48 40 1 31 1 31 40	MARTSILA 1 102RPM Maneuve Max. No	4RT - FLEX 96C Spee Laden 28.1 16.8 13.3 10.5 7.9 ering Full ahead to f o, of consecutive star	d (knots) B L L L L L L L L L L L L L L L L L L	Ballast 29.2 17.9 14.2 11.2 8.5 min 07 sec ES
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern	: HUNDAI - V 08,926 BHP X 102 58 48 40 4 31 1 31 40 48	MARTSILA 1 102RPM Maneuvi Max. No Min. RP	4RT - FLEX 96C Spee Laden 28.1 16.8 13.3 10.5 7.9 ering Full ahead to f o, of consecutive star M: 13.91 ,	d (knots) B Ull astern : 11 tts : 30 TIM Min. steering Sp	Ballast 29.2 17.9 14.2 11.2 8.5 min 07 sec ES seed : 5.5 knots
Type of Engine : Max. Power : 10 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern	: HUNDAI - V 08,926 BHP X 102 58 48 40 4 31 1 31 40 48 58	MARTSILA 1 102RPM Maneuvo Max. No Min. RP	4RT - FLEX 96C Spee Laden 28.1 16.8 13.3 10.5 7.9 ering Full ahead to f o, of consecutive star M : 13.91 ,	d (knots) B Ull astern : 11 rts : 30 TIM Min. steering Sp	Ballast 29.2 17.9 14.2 11.2 8.5 min 07 sec ES seed : 5.5 knots

6. HYUNDAI COLOMBO

Abb. A1.6: Hyundai Colombo [A1.6]

	CADD NO			Ship's Name : H	IYUNDAI COLOMBO
IL01	CARD N4			Voy. No. :	
ort :		Arr.		Dep.	Date : 20
Call	sign · 3EIN7		Flag P	ANAMA	Year Built : 2007
- Can a					
Gross	Ton : 74,651M	Г	Net Ton :	43,151 MT	Deadweight : 80,107.7 M/
Draft	Aft: m	cm	Fwd :	m cm	Displacement :
	•	303.8m			
- 1	* 76 m		228m	>	
40 m					
					m 62m
÷					
					7 % F
			CL: 1		
			Ship's p	articulars	
	Length overall :	303.83	m	Anchor chai	n : Port 14 shackles
	Breadth :	40.0	m		Stbd 13 shackles
	Death	24.2			(1 shackle : 27.5 m)
	Type of Engine : HI	INDAL B&	W 12K 98MC	-C	
	Type of Engine : HU Max. Power : 93,12	UNDAI B& 0 BHP X 10	W 12K 98MC 4RPM	-C	
	Type of Engine : Ht Max. Power : 93,12 Engine Order	UNDAI B&' 0 BHP X 10 RPM	W 12K 98MC 4RPM	-C Spee	nd (knots)
	Type of Engine : HU Max. Power : 93,12 Engine Order	UNDAI B& 0 BHP X 10 RPM	W 12K 98MC 4RPM	-C Spee Laden	ad (knots) Ballast 28.48
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead	UNDAI B& 0 BHP X 10 RPM 103 60	W 12K 98MC 4RPM	-C Spec Laden 27.27 15.75	ad (knots) Ballust 28.48 17.25
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead	UNDAI B& 0 BHP X 10 RPM 103 60 50	W 12K 98MC 4RPM	-C Spec Laden 27.27 15.75 13.12	ad (knots) Ballust 28.48 17.25 14.37
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead	UNDAI B& 0 BHP X 10 RPM 103 60 50 42	W 12K 98MC 4RPM	-C Laden 27.27 15.75 13.12 11.02	ad (knots) Ballast 28.48 17.25 14.37 12.07
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28	W 12K 98MC 4RPM	-C Laden 27.27 15.75 13.12 11.02 7.35	ad (knots) Ballast 28.48 17.25 14.37 12.07 8.05
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 28	W 12K 98MC 4RPM	-C Laden 27.27 15.75 13.12 11.02 7.35 ng Full ahead to f	ed (knots) Ballast 28.48 17.25 14.37 12.07 8.05 will astern : 6 min 40 sec
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 28 42	W 12K 98MC 4RPM Maneuveri Max. No. c	-C Laden 27.27 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive star	ed (knots) Ballast 28.48 17.25 14.37 12.07 8.05 iull astern : 6 min 40 sec rts : 15 TIMES
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 28 42 50	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM	-C <u>Laden</u> 27.27 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive stat : 25.8 , N	ed (knots) Ballast 28.48 17.25 14.37 12.07 8.05 iull astern : 6 min 40 see rts : 15 TIMES Min. steering Speed : 6.04 knots
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 42 28 42 50 60	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM	-C <u>Laden</u> 27.27 15.75 13.12 11.02 7.35 mg Full ahead to f of consecutive stat : 25.8 , N	ed (knots) Ballast 28.48 17.25 14.37 12.07 8.05 iull astern : 6 min 40 see rts : 15 TIMES Min. steering Speed : 6.04 knots
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Dead slow ahead Dead slow astern Half astern Full astern Bow Thruster Power	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 42 50 60 : 3,351 Bi	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Spec</u> <u>Laden</u> <u>27.27</u> <u>15.75</u> <u>13.12</u> <u>11.02</u> <u>7.35</u> ng Full ahead to for f consecutive stat : 25.8 , N W)	ed (knots) Ballust 28.48 17.25 14.37 12.07 8.05 Will astern : 6 min 40 sec rts : 15 TIMES Min. steering Speed : 6.04 knots
	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern Bow Thruster Power	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 42 28 42 50 60 : <u>3,351 B</u>	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Spec</u> <u>Laden</u> <u>27.27</u> <u>15.75</u> <u>13.12</u> <u>11.02</u> <u>7.35</u> ng Full ahead to f of consecutive stat : 25.8 , <u>N</u> <u>W</u>	ed (knots) Ballust 28.48 17.25 14.37 12.07 8.05 'ull astern : 6 min 40 sec rts : 15 TIMES Min. steering Speed : 6.04 knots
Gyro	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Bow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern Bow Thruster Power error : deg E	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 42 28 42 50 60 : <u>3,351 B</u> / W	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Spec</u> <u>Laden</u> <u>27.27</u> 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive star : 25.8 , ? <u>W</u>	ed (knots) Ballust 28.48 17.25 14.37 12.07 8.05 Will astern : 6 min 40 sec rts : 15 TIMES Min. steering Speed : 6.04 knots
Gyro	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Dead slow ahead Dead slow astern Half astern Full astern Full astern Bow Thruster Power error : deg E tive equipment :	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 42 28 42 50 60 : <u>3,351 Bi</u> / W	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Spec</u> <u>Laden</u> <u>27.27</u> 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive star : 25.8 , ? <u>W</u>	ed (knots) Ballust 28.48 17.25 14.37 12.07 8.05 Will astern : 6 min 40 sec rts : 15 TIMES Min. steering Speed : 6.04 knots
Gyro	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern Bow Thruster Power error : deg E tive equipment :	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 42 28 42 50 60 : <u>3,351 Bi</u> / W	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C Spec Laden 27.27 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive stat : 25.8 , ? W)	ed (knots) Ballast 28.48 17.25 14.37 12.07 8.05 Will astern : 6 min 40 see rts : 15 TIMES Min. steering Speed : 6.04 knots Pilot
Gyro	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Dead slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern Bow Thruster Power error : deg E tive equipment :	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 42 50 60 : <u>3,351 Bi</u> / W OO	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Spec</u> <u>Laden</u> <u>27.27</u> 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive star : 25.8 , ? <u>W</u>	ed (knots) Ballast 28.48 17.25 14.37 12.07 8.05 iull astern : 6 min 40 see rts : 15 TIMES Min. steering Speed : 6.04 knots er Pilot
Gyro 0 Defec	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern Bow Thruster Power error : deg E tive equipment : Function	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 42 50 60 : 3,351 Bl / W OO	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Spee</u> <u>Laden</u> <u>27.27</u> 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive star : 25.8 , N <u>W</u>	er Pilot
Gyro C Defec F Nam	Type of Engine : HU Max. Power : 93,12 Engine Order Nav. Full ahead Full ahead Half ahead Dead slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern Bow Thruster Power error : deg E tive equipment : function	UNDAI B& 0 BHP X 10 RPM 103 60 50 42 28 28 42 50 60 : 3,351 Bi / W	W 12K 98MC 4RPM Maneuveri Max. No. c Min. RPM HP (2,500 K	-C <u>Laden</u> 27.27 15.75 13.12 11.02 7.35 ng Full ahead to f of consecutive star : 25.8 , N W) Maste	Ballast 28.48 17.25 14.37 12.07 8.05 Will astern : 6 min 40 sec rts : 15 TIMES Min. steering Speed : 6.04 knots Sr

7. MV CHAITEN

Abb. A1.7: MV Chaiten [A1.7]

PI	LOT CARD			
PORT ARR. HAM	BURG	DATI	E 05.01.2	007
Draught fwd 13.22 m Drau	ght aft13.50	m Drau	ght amid	m
Name MV CHA	ITEN	Call	sign <u>A</u> 8	IX 5
Gross tonnage 66.280 t Net t	onnage 36.284	t Mou	ded depth	24.20 m
Length OA 276.20 m Brea	ith 40.00	m Bulb	ous bow	Yes
90.1 m 186.06 m 263.80 m ENGINE	Air daught		1620 1620	59.4 m
Type of engine HYUNDAY-SULZER	10RT - flex96C			
Maximum power 547542 KW 7 14	Loddenset	211	h e ll e et	
rpm	loaded speed	he	ballast spe	ed
Full sea speed 96.5	25.6	kts hts	26.0	kts
Full ancad 65	17.9	kts hts	12.5	kts
Flam ahead 40	13.7	kts ktc	10.8	kte
Dead slow ahead 27	7.4	kts	7 3	kte
Dead slow astern 27		A15	1.2	A63
Slow astern 40	Maximum num	ber of cons	ecutive starts	8
Half astern 50	-			
Full astern 86	-			
STBD ANCHOR CHAIN - 13 SHA PORT ANCHOR CHAIN - 12 SHA STEERING	CKLES CKLES			
Rudders 1 SEMI	- BALANCED	type	35° maxi	mum angle
Time hard-over to hard-over 2	8 sec/per one unit	14	sec/per two u	nit
Propeller: 1 Direction of	turn: RIGHT-HA	NDED	Pitch:	FIXED
Bow thrusters 1 Power	2.000 kW	2.72	0 HP	
CHI Anchors Z Whistle Z Radar 3 cn Z 10 cm Z ARPA Z Speed log Dappler: yes Water speed Z Ground speed Z Dual-axis Z	ECKED IF ABOARD Engine telegraphs Steering gear Number of power units Rudder indicator RPM indicator RATE of turn indicator	AND REA	DY Compass sy Constant gy VHF Electronic p Type	stem 🗹 ro error +/- Ø* I os faing 📿 DGP:
PILOT'S NAME:				

8. CMA CGM AEGEAN

Abb. A1.8: CMA CGM Aegean [A1.8]

GR. MORES	MINT GMIND	a ren :		PILO	T CARD			DATE
0 m - 20	u-fa/ Hamiyang						04.	- MAY-2002
Vessel:	CMA CO	GM AEGEAN		Port:	HAMBUIZG		D Arrival	Departure
			SHIP'S F	ARTIC	ULARS			
Call sign:	ELYA 5		Displ: 4760	1 mt	Dearhweight	35066	Verre	Charilto 1004
					- courseau		1 531 0	1990
Draft Fwd:	11.8	0	Time to the	12	. 36		112	5 -
-OA	201.5 m	E	Anchor chain:	Port	12 sharkles	Air Draft: Stochoord	40	7-0.
					Le sellicates	semanta	1	2 shackles
speadur	32.35 m			Stern	NIL sharkles			
ous boy	87 D	Ves / 🗖 No			(1 shackle =	27.5	10	15.04 fathoms)
3		0				in		56 m
j.,	inp: Hype	Para b Bate dat B.A.W.S.V.90	llel Wil, aded 78, allast 36.	2 m ¹ 3 m			D 2	56 m
j ype of Engi	inp: Hynd	Para la la dai B&W 8K80	llel W.1, adod 78, lllast 36, Maximum F	2 m 3 m 2 ower	MCR 25400 KW @	in in 104 RPM	D 2	56 m
j ype of Engi Janoeuveri	inp: Hyua ing engine or	dai B&W SES0 der	llei Wil, 78, adeá 78, lliar 36, Maximum H RPM/p	2 m ¹ 3 m 2 ower itch	MCR 25400 KW @	IO4 RPM Speed (1	(hots)	56 m
j ype of Engi lanoeuveri	ins: Hyua ing engine or Full ahead	Para bai B&W SES0 der	llei wa, 78, adeć 78, allart 36, Maximum H RPM/p	2 m 3 m 2 ower itch	MCR 25400 KW @ Loaded	IO4 RPM Speed (1	(nots)	Ballast
j., ype of Engi Janoeuveri	ine: Hyna ing engine or Full ahead Half ahead	dai B&W SESO	llei Wil,	2 m 3 m Power itch	MCR 25400 KW @ Loaded	ID4 RPM Speed (1 10)	(D) knots)	Ballast
j., ype of Engi lanceuveri	ine: Hyna ing engine or Full ahead Half ahead Slow ahead	dai B&W \$E\$0 der	llei Wil,	2 m 1 3 m Power itch	MCR 25400 KW @ 1	104 RPM 5peed 0 10 10 10	(nots)	Ballast
1 ype of Engi Janoeuveri	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a	dai B&W SESO der ahead	llei Wil,	2 m 3 m 9 ower itch 5 2 5	MCR 25400 KW @ :	104 RPM 104 RPM 5peed 0 10 10 12 8	(nots)	Ballast
ţ., ype of Engi	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a Dead slow a	dai B&W SESO dai B&W SESO der ahead strem	llei Wil,	2 m 3 m burner itrls 5 5 5	MCR 25400 KW @ : Loaded	104 RPM 104 RPM 5peed 0 10 10 10 10 10 10 10 10 10 1	(nots)	Ballast 0 6 2 8
ţ ype of Engi Janoeuveri	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a Slow astern	dai B&W SESO dai B&W SESO der ahead strem	llei Wil,	2 m 3 m 9 ower itch 5 5 5 5	MCR 25400 KW @ : Loaded	104 RPM 104 RPM 5peed 0 10 10 10 10 10 10 10 10 10 1	(nots) 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16	Ballast 0 6 2 8
ţ ype of Engi Janoeuverî	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a Slow astern Half astern	dai B&W SESO dai B&W SESO der ahead sstern	llei Wit,	2 m 2 m 3 m 2 awer itch 5 5 5 5 1	R MCR 25400 KW @ : Loaded Time limit astern: Full ahead to astern: Max No. of consec. star	104 RPM 104 RPM 104 RPM 10 10 10 10 10 10 10 10 10 10	(nots) 10 11 12 13 14 15 15 10 15 10 10 10 10 10 10 10 10 10 10	Ballast 0 6 2 8
ţ ype of Engi Janoeuverî	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a Dead slow a Slow astern Half astern Full astern	dai B&W SESO dai B&W SESO der ahead astern	Ilei Wit,	2 m ¹ 3 m 9 ower itch 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R MCR 25400 KW @ : Loaded Time limit astern: Full ahead to astern: Max No. of consec. star Minimum RPM 35	na in in in in in in in in in in	(nots) 11 12 12 12 12 12 14 12 12 13 14 15 14 15 15 15 15 15 15 15 15 15 15	Ballast 0 6 2 8 8 knots
j ype of Engi Janoeuveri ow Throsten eering hard aster :	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a Dead slow a Slow astern Half astern Full astern f 1553 KW n iover - hardor	dai B&W SESO dai B&W SESO der der der der der der der der der der	llei Wil,	2 m 3 m 2 m 3 m 2 m 2 m 1 m 2 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	R MCR 25400 KW @ : Loaded Time limit astern: Full abead to astern: Max No. of consec. star Minimum RPM 35 Astern power 8 kts.	104 RPM 104 RPM Speed (1 10) 10 10 12 8 10 12 12 12 12 12 12 12 12 12 12	knots)	Ballast 9 6 2 8 8 8 8 8
j ype of Engi Janoeuveri Janoeuveri Janoeuveri Janoeuveri Janoeuveri Janoeuveri Janoeuveri Janoeuveri Janoeuveri	ine: Hynn ing engine or Full ahead Half ahead Slow ahead Dead slow a Dead slow a Slow astern Half astern Full astern full astern full astern full astern forer - hardor Capt. Zeljico	dai B&W SESO dai B&W SESO der der der der der der der der der der	Ilei Wil,	2 m 1 3 m 2 9 m Wer 1 tr h 5 5 5 5 5 5 5 5 5 5 5 5 5	R MCR 25400 KW @ Loaded Loaded Time limit astern: Full abead to astern: Max No. of consec. star Minimum RPM 35 Astern power S kts. Pilot's Name/Signatur	e	knots)	Ballast 9 6 2 8 8 knots

9. CMA CGM NILGAI

Abb. A1.9: CMA CGM Nilgai [A1.9]

	10 HO 180			PI	LOT	CARD			DATE	
.x. \$CHIF	FAHRT GMON A	CIL.								
Attu	SandtorLat 77							13/0	17/200	6
essel.	CMA CGM	NUGAI			Port	HAMBU	RG	Arrival	Der	0 orture
	00010000				prore	10000		ED ATTAC	<u> </u>	
			SH	IP'S PAR'	TICUL	ARS				
all sign:	A8CF3		Displ-	67236	5 1256	Deadweight	50828	Year of t	xeilt:	2003
enti Turdi		9.30m	-	2		9.85m	Air Dong.	4	7.8m	
OA	260 m		Anchor chain:	Agr Alt	Port	13 shackles	Starboard	12	shadiles	
lreadth	32.25 m				Stem	NIL_sinckles				
ultous bo	n: 🗹	Yes / 🗌 No				(1 shackle =	27.5	10	15.04	fathoms
				102.202						
	67.7	47		192.303	5 m		à	—		
+		0								
	F .								>	
32.2	5) ·Airdraft				
						1 17 0			5 m /	
	L.					47.0		1	27.0	1 1
		0				47.6	?		57.0	10
*	-	0 P	eralle) W.L.			47.0		-	57.6	n
,		0 P	eralle) WA. louded			 		()	57.0	n
*		P	eralle) WA. looded Bellan		n B	156.4	E	۵,	57.0	n
,		0 P	redict W.L. looded Bollast		п	 		¢,	57.0	n
ype of En	gine: HSD-5	MAN B&W 8KS	erabel W4. looded Bollant OMC-C MBc6 1	daximum)	ra ra Power	47.0 156.0 MCR 36480 KW		D2	57.6 	n 100.4rps
ype of En	gine: HSD-b ring engine crd	MAN B&W 8KS	nalici W4. looded Bellan 0MC-C MRc6 N	Maximum I RPM/p	Power pitch	47.0 156.0 MCR 36480 KW	104rpm	NCR 32832 K (knots)	57.6 	n 100.4rps
time of En	gine: HSD-3 ring engine ord	MAN B&W 8KS	rald W1 leaded Bolian OMC-C ME6 N	Maximum I RPM/p	ra ra Power pitch	MCR 36480 KW	104rpm	(knots)	SJ.0	n 100.4rps
ype of En Aanoeuve	gine: HSD-b ring engine erd	PAN B&W 8K5	rald W1. logdet Bollast OMC-C MB:6 1	Maximum I RPM/p 70	ra ra pitch	MCR 36480 KW	104mm 104mm 177.8	(knots)	S7.6	n 100.4rps
ype of En	gine: HSD-h ring engine ord Full shead Half shead	Provide the second seco	rald W1. logdet Bollas OMC-C MEr6 1	Maximum I RPM/p 70	Power	MCR 36480 KW	104pm 104pm 17.8 14.1	NCR 32832 K (knots) 1 1 1 1 1 1 1 1 1 1 1 1 1	S7.6	n 100.4rpi
ype of Eng	gine: HSD-2 ring engine ord Full shead Half shead Slow ahead	Provide the second seco	rald WL logdet Bollas OMC-C ME6 1	Maximum 1 RPM/p 70 4: 3	Power pitch	MCR 36480 KW	104mm Speed 17.8 14.1 106 8.2	NCR 32832 K (knots) 18.7 14.8 11.1 8	37.6	n 100.4rpi
ype of Engl	gine: HSD-b ring engine ord Full shead Half shead Slow ahead Dead slow ah	Provide the second seco	rald W1 loaded Bellast 0MC-C ME6 1	Maximum 1 RPM/y 70 66 42 32	Power pitch 0 5 5 5	MCR 36480 KW	104pm 104pm 17.8 14.1 10.6 8.2	(knots) 1 1 1 1 1 1 8 9	37.6	n 100.4rps
ype of Eng	gine: HSD-b ring engine ord Full shead Half shead Slow ahead Dead slow ah Slow at	MAN B&W 8K5 er tead	rald W1. loaded Bollast 00MC-C M56 1	Maximum 1 RPM/p 60 4: 3: 3:	Power pitch 0 5 5 5 5	MCR 36480 KW Losded	104mm 104mm Speed 17.8 14.1 10.6 8.2 10 100	NCR 32832 k (knots) 1 18.7 14.8 11.1 8.6 niin secondi	37.6	n 100.4rps
ype of Eng	ring engine crd Full ahead Half ahead Dead slow ahead Dead slow as Slow askern Malf astern Malf astern	MAN B&W 8K5 er iead terp	reld W1. leaded Bollast OMC-C M26 1	Maximum 1 RPM/p 70 60 42 33 33 34	Power pitch	MCR 36480 KW Losded Tame limit astern: Fall abead to astern:	104rpm 104rpm 5peed 17.8 14.1 10.6 8.2 10 -430	NCR 32832 k (knots) 1 18.7 14.8 11.1 8.6 min seconds 10	37.6	n 100.4rp
ype of En	gime: HSD-2 ring engine ord Full shead Half ahead Slow ahead Dead slow ah Deod slow as Slow assern Half assern	MAN B&W SKS er tead	rald W1. loaded Bellast OMC-C ME66 1	Maximum 1 RPM/p 70 60 41 33 33 41 60 20	Power pitch	Tame limit astern: Fall ahead to astern: Maximo 2016	104mm 104mm Speed 17.8 14.1 10.6 8.2 10. -300 crts	NCR 32832 K (knots) 1 14.8 11.1 8.6 nin seconds 10 2	27.0	n 100.4rp
ype of En	gine: HSD-2 ring engine ord Full shead Half shead Slow shead Dead slow ah Dead slow as Slow aslern Half astern Full astern	MAN B&W SKS er tead	rald W1. looded Bellast OMC-C ME66 N	Maximum 1 RPM/p 70 60 41 31 32 32 32 32 32 32 32 32 32 32 32 32 32	Power pitch 0 5 5 5 5 0 0	MCR 36480 KW Losded Time limit astern: Fall ahead to astern: Maximum RPM 3 Minimum RPM 3	104epm 104epm 104epm 104epm 17.8 14.1 10.6 8.2 10 -130 arts 15 15	NCR 32832 K (knots) 1 18.7 14.8 11.1 8.6 nin secrods 10 8.2 8.2	27.6 TW Ballisst	n 100.4rp
ype of En	gine: HSD-M ring engine ord Full shead Half shead Slow ahead Dead slow ah Dead slow as Slow assem Half assem Full astem	MAN B&W SKS er tead terp	ordel W1. leader Bellast OMC-C MB/6 N	Maximum RPM/y 70 60 4: 3: 3: 4: 6/ 70	Power pitch 0 5 5 5 5 3 0 0	Ar.o 136.6 MCR 36480 KW Losded Tame limit astern: Fall ahead to astern: Max No. of consec. st Maximum RPM Astern polvar Deptidements interest	104ppm 104ppm 104ppm 17.8 14.1 10.6 8.2 10 -430 zrts 35 zppro, 70	NCR 32832 K (knots) 1 18.7 14.8 11.1 8.6 niin seconds 10 8.2 %ahead	S7.0	n 100.4rps
ype of En Manceuver	gine: HSD-2 ring engine ord Full shead Half abead Slow ahead Dead slow ah Dead slow ahead Dead slow as Slow astern Half asseru Full astern Ier 1600KW too	MAN B&W 8KS er iead terp er lie (2 Moren	eraled W1. looded Bollase OMC-C ME66 N	Maximum I RPM/p 70 60 41 33 31 31 32 41 60 70 5	Power pitch 0 5 5 5 5 5 0 0	Time Jimit astern: Fall ahead to astern: Max No. of consec. st Maximum RPM 3 Astern power Bowlinusier interest	104pm 104pm 5peed 17.8 14.1 10.6 8.2 10 -430 prts 5 sppro, 70 rstan 4.05MPT 55	NCR 32832 K (knots) 1 18.7 14.8 11.1 8.6 niin seconds 10 8.2 %ahead op immersion f	S7.0 CW Balliest knots 8.10M	n 100.4rp
ype of En Vanceuver	gine: HSD-b ring engine crd Full shead Half shead Dead slow ahead Dead slow as Slow asiern Half astern Full astern Full astern full astern ier 1600/kW fuo rdover - hardow	Provide a spectra of the second secon	ralel W1. loaded Bellast OMC-C ME6 1 Compared to the second secon	Maximum 1 RPM/p 7/ 66 4: 3: 4: 3: 4: 7/ 5 1 motor (Power pitch 0 0 5 5 5 5 5 0 0	MCR 36480 KW Loaded Tame limit astern: Fall abeed to astern: Max No. of conset. st Minimum RPM 3 Astern power Bowthrusser immer Min steerage appro Promeling days 7.28	104mm 104mm Speed 17.8 14.1 10.6 8.2 10.6 10	(knots) 10	27.0 TW Balliast knots 8.10M	n 100.4rp
ype of En Manceuver	gine: HSD-5 ring engine ord Full shead Slow ahead Dead slow ah Dead slow ahead Dead slow ahead The slow ahead Half asser Full astern Full astern The slow ahead Address and the slow ahead Dead slow ahead Dead slow ahead Dead slow ahead Dead slow ahead Dead slow ahead Dead slow ahead Half astern Full astern man spd adv 0	MAN B&W 8KS er lead tern A effective at spo er 14s (2 Motor (442' transfer 0.	eeds above 5kt. 2707	Maximum 1 RPM/y 7/ 6(4: 3: 3: 4: 6/ 7/ 5 5 1 motor)	Power pitch 0 5 5 5 5 5 5 0 0	Ar.o 136.6 MCR 36480 KW Losded Tame limit astern: Fall ahead to astern: Max No. of consec. st Maximum RPM Astern power Bowlarussier intmer Min steerage appro- Propellor diem 7.81	104ppm 104ppm 104ppm 17.8 14.1 10.6 8.2 10 -130 atts 35 appro, 70 -130 AGSM,PT X6.5Mx5 M, RH RudJet	NCR 32832 K (knots) 1 18.7 14.8 11.1 8.6 niin secodds 10 8.2 %ahead op immersion % 46.095 sq M	knots 8.10M	n 100.41p
type of Englanceuver fanceuver more aver more aver more aver more aver	rine: HSD-b ring engine crd Full ahead Half ahead Slow ahead Dead slow ah Slow asiern Half astern Full astern rdooker -hardow man spd ado 0	P MAN B&W 8K5 er iead terp A effective at sp er 14s (2 Motor 1442 transfer 9.	erded W-L loaded Bellast OMC-C ME66 1 COMC-C	Maximum 1 RPM/p 70 60 41 33 33 42 50 70 8 1 molocy	Power pitch 0 5 5 5 5 0 0	Tame limit astern Fall ahead to astern: Marx No. of conser. sz Minzimumi RPM 3 Astern power Bowtfrusser utmer Min steerage appro Propellor dien 7.81	104rpm 104rpm Speed 17.8 14.1 10.6 8.2 10. 10.6 8.2 10. 10.6 8.2 10.6	NCR 32832 K (knots) 1 18.7 14.8 11.1 8.6 nin seconds 10 8.2 %abead op immersion f r46.095 sq M	knots	n 100.41p
ype of En fanceuver more the weing he ren of full emarks :	rine: HSD-2 ring engine erd Full shead Half ahead Slow ahead Dead slow ah Dead slow as Slow astern Half assern Full astern Full astern full astern ter 1600KW to rdover -hardow man spd adv 0	P MAN BacW 8K5 er tead tern st effective at sp er 145 (2 Motor 1442 transfer 8, 0.442 transfer 8, 0.442 transfer 8,	radel W1. leader Bellast OMC-C ME66 N COMC-C	Maximum I RPM/p 70 60 41 33 33 34 34 34 36 70 5 1 motor) pm bosedia	Power pitch 0 5 5 5 5 5 0 0	Time limit astern: Time limit astern: Fall ahead to astern: Max No. of centee, st Minimum RPM 3 Astern power Bowfarusser interen Min steerage appro Propellor disen 7.81 as matte & signature co	104epm 104epm Speed 17.8 14.1 10.6 8.2 10 -130 arts 15 son 4.05M,Pr × 6.5kts M, RH Rudder allintang recey	NCR 32832 K (knots) 1 18.7 14.8 11.1 8.6 nin seconds 10 8.2 %ahead op immertion f 46.095 sq M	knots 8. LOM	n 100.41p

10. E.R. AMSTERDAM

Abb. A1.10: E.R. Amsterdam [A1.10]

NI DI	<u>रका</u>	PILO	T CARD		D	ATE
L.R. SCHUPPAHR Am Sandi	T GMBH & CIL				10-J	an-06
/essel: E	R. AMSTERDAM	Port:	HAMBURG	2	Arrival [Departure
E>.	PONZ MORPHUS /					
		SHIP'S PARTIC	CULARS			
Call sign: D	PMT max	Displ: 92439 mt	max Deadweight: _	67557 mt	Year of bu	ult: 2000
Draft Fwd:	11.50	Draft Aft:	11.80	11.6	48	.11
-OA:	277.4 m	Breadth:	40m			
Anchor chain:	Port 13 shack	as Starboard 14	ebacklas (tebakla =	27.5m = 15.0v	(fothoms)	
Sulbous bow:	❷ Yes/□ No					
-	88.16 m	188.34 m				
à						1 A
1						
0.0 m) · Airdraft			1
14			48.11	m	-	60 m
Y			R	n		
	Pa		,			
	Par Par	valiel W/L 120 m), E	-
	Part Part R	allast 51 m		É (⋧╞	-
	Part Part R	veded 120 m latest 51 m	RIGHT HA			ELLER
ype of Engin	e: MAN B&W 12K90	Aleximum Power	RIGHT HA		ED PROP	ELLER
ype of Engin	e: MAN B&W 12K900	Allel W/L isoled atlast MC Maximum Power RPM/pitch	RIGHT HA	ANDED FIXE	ED PROP	ELLER 94RPIM-24.9K
ype of Engin Manoeuvering	e: MAN B&W 12K900 g engine order	Atel WL 120 m atast 51 m MC Maximum Power RPM/pitch	RIGHT HA	ANDED FIXE	ED PROP R 46650@t nots) Bit	ELLER 94RPM-24.9K
Type of Engin Manoeuvering F	e: MAN B&W 12K900 g engine order ull ahead	Allel W/L 120 m wided 120 m alast 51 m MC Maximum Power RPM/pitch 60	RIGHT HA MCR 54840KW @1 Losded 16.6	ANDED FIXE	ED PROP R 46650@1 nots) B: 1	ELLER 94RPM-24.9K
ype of Engin Manoeuvering F	e: MAN B&W 12K900 g engine order ull ahead falf ahead	atletWu 120 m wided 120 m atast 51 m MC Maximum Power RPM/pitch 60 45	RIGHT HA MCR 54840KW @1 Losded 16.6 11.3	ANDED FIXI	ED PROP R 46650@1 nots) Be 1	ELLER 94RPM-24.9K allast 7.4 2.5
Type of Engin Manaeuvering F F S	e: MAN B&W 12K900 gengine order ull shead talf ahead Sow ahead	Itel/WL Itel/WL <t< td=""><td>RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8</td><td>ANDED FIXE</td><td>ED PROP R 46650@1 nots) Be 1</td><td>ELLER 94RPM-24.9K allast 7.4 2.5 9.3</td></t<>	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8	ANDED FIXE	ED PROP R 46650@1 nots) Be 1	ELLER 94RPM-24.9K allast 7.4 2.5 9.3
ype of Engin Manoeuvering F F S C	e: MAN B&W 12K900 gengine order full shead falf ahead Sow ahead Dead slow ahead	Itel/WL Itel/WL <t< td=""><td>RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5</td><td>ANDED FIXI</td><td>ED PROP R 46650@1 nots) Be 1</td><td>ELLER 94RPM-24.9K 10ast 7.4 2.5 9.3 8</td></t<>	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5	ANDED FIXI	ED PROP R 46650@1 nots) Be 1	ELLER 94RPM-24.9K 10ast 7.4 2.5 9.3 8
'ype of Engin Manoeuvering F F S C C C	e: MAN B&W 12K900 g engine order ull ahead talf ahead bow ahead Dead slow ahead Dead slow astern	Itel/WL Itel/WL <t< td=""><td>RIGHT HA MCR 54840KW @1 16.6 16.6 11.3 8.8 7.5 Time limit astern:</td><td>ANDED FIXI</td><td>ED PROP R 46650@1 nots) Be 1</td><td>ELLER 94RPM-24.9K 1013st 2.5 2.3 8 in</td></t<>	RIGHT HA MCR 54840KW @1 16.6 16.6 11.3 8.8 7.5 Time limit astern:	ANDED FIXI	ED PROP R 46650@1 nots) Be 1	ELLER 94RPM-24.9K 1013st 2.5 2.3 8 in
ype of Engin Manoeuvering F S C C S	e: MAN B&W 12K900 g engine order ull ahead falf ahead Siow ahead Dead slow astern Slow astern	attel WL itel WL <	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern:	ANDED FIXI 12RPM NC Speed (k NO 665	ED PROP R 46650@1 1 1 54	ELLER 94RPM-24.9K 91last 7.4 2.5 9.3 8 in econds
Type of Engin Manoeuvering F S C C S S F	e: MAN B&W 12K900 g engine order ull sheed falf aheed Sow aheed Dead slow astern Slow astern Slow astern Half astern	attel/WL 120 m wood 120 m atlasti 51 m MC Maximum Power RPM/pitch 60 45 35 27 27 35 45	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 6.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6	ED PROP R 46650@ nots) ER 1 1 1 1 5 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ELLER 94RPIM-24.9K allast 7.4 2.5 9.3 8 8 in reconds ng. R. / Bridge
ype of Engin Manoeuvering F S C C S F F F	e: MAN B&W 12K900 g engine order ull sheed faif aheed box aheed Dead slow aheed Dead slow aheed Dead slow aheern faif astern faif astern ull astern	atelW/L 120 m wood 120 m atast 51 m //C Maximum Power RPM/pitch 60 45 35 27 35 45 60 45 60	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24	ANDED FIX! 12RPM NC Speed (k NO 665 15 / 6 5.4	ED PROP RR 46650@mnots) 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ELLER 94RPM-24.9K allast 7.4 2.5 9.3 8 8 in reconds ng. R. / Bridge tots
Type of Engin Manoeuvering F F S C C S F F	e: MAN B&W 12K900 g engine order ull ahead falf ahead Slow ahead Dead slow astern Slow astern falf astern falf astern falf astern falf astern	attel/WL itel/WL <	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4	ED PROP R 46650@innots) Bei 1 1 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	ELLER 94RPM-24.91 allast 7.4 2.5 3.3 8 in rconds ng. R. / Bridg tots school
Fype of Engin Manoeuvering F S C C C C S S S S S S S S S S S S S S	e: MAN B&W 12K900 gengine order uil eheed falf aheed Sow aheed bead slow astern slow astern slow astern uil astern uil astern uil astern 2000KW, (2720 HP) not	atelW/L 120 m wood 120 m atast 51 m MC Maximum Power RPM/pitch 60 45 35 27 27 35 27 45 60 45 60	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power we Skts	ANDED FIXI 12RPM NC Speed (k NC 665 15 / 6 5.4 8pprox	ED PROP ED PROP R 46850@inots) Be Be E E kr 60 %	ELLER 94RPM-24.9K allast 7.4 2.5 9.3 8 anin econds ng. R. / Bridge tots ahead
Type of Engin Manoeuvering F F S C C C S C C S S C C S S S C C S	e: MAN B&W 12K900 gengine order uill eheed falf aheed Sow aheed Sow aheed Dead slow astern Slow astern falf astern Uil astern Uil astern 2000KW, (2720 HP) not nmersion 5 25m	atelW/L 120 m wood 120 m atast 51 m MC Maximum Power RPM/pitch 60 45 35 27 27 35 27 45 60 45 35 27 27 35 60 45 60	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power ve 5kts	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4 approx	ED PROP ED PROP Inots) Ba Ba I I I I I I I I I I I I I I I I I	ELLER 94RPM-24.9K 1018st 7.4 2.5 9.3 8 8 in rconds ng. R. / Bridge tots ahead
Type of Engin Manoeuvering F S C C C S S S S S S S S S S S S S S S	e: MAN B&W 12K900 gengine order ull ahead falf ahead Slow ahead Dead slow astern Slow astern falf astern falf astern falf astern falf astern 2000KW, (2720 HP) not nmersion 5.25m on 8.64m	atel WL 120 m wood 120 m atast 51 m MC Maximum Power RPM/pitch 60 45 35 27 27 35 45 60 45	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power ve 5kts	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4 approx	ED PROP R 46650@innots) ER 1 1 1 5 60 %	ELLER 94RPM-24.9K 1018st 7.4 2.5 9.3 8 in rconds ng. R. / Bridge tots ahead
Type of Engin Manoeuvering F S C C C S S Sow Thruster Sow	e: MAN B&W 12K900 gengine order ull ahead falf ahead Sow ahead Dead slow astern Slow astern Slow astern Half astern Ull astern 2000KW, (2720 HP) not nmersion 5,25m on 8,64m	atel WL 120 m wood 120 m atast 51 m MC Maximum Power RPM/pitch 60 45 35 27 27 35 45 60 45 35 27 27 35 45 60 45 80 effective at speeds abor Motors) 26 3s (1 Motor)	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power we 5kts	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4 8pprox	ED PROP ED PROP R 46650@innots) EN 1 1 1 5 60 %	ELLER P4RPIM-24.9K allast 7.4 2.5 3.3 8 in reconds ng. R. / Bridge tots ahead
ype of Engin Manoeuvering F F S C C C C C C C C C C C C C C C C C	e: MAN B&W 12K900 g engine order uit eheed falf aheed Sow aheed Dead slow aheed Dead slow astern Slow astern Slow astern Slow astern Slow astern Uit astern Uit astern 2000KW, (2720 HP) not nmersion 5.25m on 8.64m over -hardover 10.9s (2 1 peed - 3.1 kts	atel WL 120 m wided 120 m atast 51 m V/C Maximum Power RPM/pitch 60 45 35 27 35 45 60 45 35 27 35 45 60 45 80 effective at speeds abor Wotors), 26.3s (1 Motor)	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power we 5kts	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4 approx	ED PROP ED PROP R 46650@ nots) E E E K K K K K K K K K K K K K	ELLER 94RPM-24.9K allast 7.4 2.5 9.3 8 in econds ng. R. / Bridge obs ahead
ype of Engin Manoeuvering F S C C C S S F F F Iow Thruster Iow Thruster Iow Thruster Iow Thruster Iow Thruster Iop Immensio Idening hards in Steering s Inster : C	e: MAN B&W 12K900 g engine order ull shead faif shead box shead Dead slow astern law astern faif astern ull astern faif astern ull astern 2000KW, (2720 HP) not nmersion 5.25m on 8.64m over -hardover 10.9s (2.1 speed - 3.1 kts	atelW/L 120 m widod 120 m atast 51 m WC Maximum Power RPM/pitch 60 45 35 27 35 45 60 45 35 27 35 45 60 with the speeds abor 60 with the speeds abor 45	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power we 5kts	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4 approx	ED PROP ED PROP R 46650@ 1 1 1 1 1 1 1 1 1 1 1 1 1	ELLER 94RPM-24.9K allast 7.4 2.5 3.3 8 in reconds ng. R. / Bridge obs ahead
Type of Engin Manoeuvering F S C C C C C C C C C C C C C C C C C C	e: MAN B&W 12K900 g engine order uit sheed faif sheed bow sheed bead slow aheed bead slow astern fail astern tail astern uit astern 2000KW, (2720 HP) not nmersion 5.25m on 8.64m over -hardover 10.9s (2.1 speed - 3.1 kts	atel WL 120 m widd 120 m atast 51 m MC Maximum Power RPM/pitch 60 45 35 27 35 45 60 45 35 27 35 45 60 effective at speeds abor viotors), 25.3s (1 Motor)	RIGHT HA MCR 54840KW @1 Loaded 16.6 11.3 8.8 7.5 Time limit astern: Full ahead to astern: Max No. of consec. st Minimum RPM 24 Astern power ve 5kts	ANDED FIXI 12RPM NC Speed (k NO 665 15 / 6 5.4 approx	ED PROP R 46650@innots) T 1 1 1 1 1 1 1 1 1 1 1 1 1	ELLER 94RPM-24.9K allast 7.4 2.5 9.3 8 in reconds ing. R. / Bridge obts ahead

11. EVER DELUXE

Abb. A1.11: Ever Deluxe [A1.11]

EIC-MAL07-02A Revision 0 Dian 16 MAY 1027 //			
	Pilot	Card	
Name of Vessel:EVER DE Call Sign:m (Displacement: Deadweight : LOA:294.13 m965' Breadth :m (105 '08 Bulbous Bow :Yesm / No	LUXE Date : 	Port: Ionnage: 52090 Net Tor Draft Aft:m (tain's Name :m in's Signature: tarticulars thain : Port: 13 shackdes Stera: NIL shack de = 27.5 m / 15 Fatherns) Torabm mAir m	Starboard: <u>13</u> shackles les
Parallel Loaded Ballart	W/L 185 m 165 m	Max 66120 PS X 1021	
MITSUBISHI SULZER 12RT, Maneuwering Eng Order	RPM/Pitch	Pewer: K Speed (Knot)
		Loaded	Ballast
Full Ahead	53	14,5	14.5
Half Ahead	44	12.5	12.0
Slow Ahead	35	9.0	9.0
Dead Slow Ahead	 ~	7.0	7.0
Slow Astern	22 22	Full Aband to Full Astern	20 Mm
Half Astern	44	Max No of Conception	Storts 15 Times
Full Astern	53	Minimum RPM 23.2	with 5.0 Knots
1 uli 200011	33	Astern Power : 80	% of Ahead
Type of Rudder:SE! Hard-Over to Hard-Over : Thruster, Bow:2000 Kt Checked if Aboard ar Anchor: (Whatle: (Radar, 3cm:(10cm: (Indicators, Rudder: () ARPA: (Speed Log; () Deopler: Yes/No_Dual-Axis: 1	Steering di-BALANCED	Particulars Max. Angle :3 Ider Angle for Neutral Effect) Stern :NILKw () Sterring Gear. () No. of Power Units Operation o Compase: () Error elegraphs: ()	5 Deg = Deg. HP) : ng ()
Type of Electric Positioning Sy	stem: G	PS	

12. GOLDEN GATE BRIDGE

Abb. A1.12: Golden Gate Brigde [A1.12]

CALLS	PILOTC	ARD	Date: SET DO-LEGA
I. SHIP'S NAME : GOLDE!	V GATE BR	IDGE	2. PORT: MANNERG
3. CALLSIGN : H9HU 4.	DEAD WEIGH	T: 71,370	6 GRUSS: 68,687 Net: 25,395
5. DRAFT FORE :	- 18 m/	1.1	ft In. 6. YEAR BUILT : July 2001
AFT:	24 m/	· ·	ft in.
	SIII	P'S PARTI	CULARS
LENGTH OVER ALL : 284.7 m - A	NCHOR CHAI	N : PORT I	2 SS/STARBOARD 12 SS (1 SS ~ 27.5 m/15 Fathom
BREADTH : 40.0 m BULBOUS	BOW: YES		4
an A			
31.4 ft			m 193.3 ß
*		-	f.
2012.0	100.0 0		
<	077.9 JI	;	
78.1 m	206.6 m		Turrente
TYDE OF ENGINE - DIESEI	MAYIMIIM P	OWER . so	COAPS(NHD) Y OF PRA
TAR OF BOOMS COUNTRY	P PBI	CRUCE	
HEIGLUBBIUG EINDIGLUBBIG FULLAITEAD	60	17.5	11911, LISTIT ASTERN : PO 1,IHUI
HALFAHEAD	50	14.5	FULL AIIEAD TO VESSEL STOP : 13 Min.20 Sec.
SLOW AHEAD	35	10.5	
DEAD SLOW AIIEAD	25	7.5	MAX. NO. OF CONSEC. START : 10 Thnes
DEAD SLOW ASTERN	25	7.5	
SLOW ASTERN	32	10.5	MINIMUM RPM 25 : 7.5 Knots
HALFASTERN	37	14.5	100001 00000 - 1004/
FILLASTERN	42	17.5	ASTERN POWER : 100%
TYPE OF RUDDER : ORDINARY	MAXIMU	MANGLE :	35 DEG .: HARD OVER TO HARD OVER 23 SEC
RUDDER ANGLE FOR NEUTRA THEREFER - RAW - 7 000 KW	(, EFFECT = 0 ; /2 200 HP)	DEG STERN	(in Port)
THRUSTER THOM 2,000 KM	(2,100 111)	177.676.11	1112
CHECKED IF ABOARD AND RE	ADY		
□ ANCHOR			
D WHISTLE	(ND	C D (AND	
		2-112110	
ENGINE TELEGRAGI			
STEERING GEAR			
D NUMBER OF POWER UN	HTS OPERATL	NG	
INDICATOR RUDDER			
(*) INDICATOR RPM			
COMPASS SYSTEM	P		0 0 4

13. HATSU SHINE

Abb. A1.13: Hatsu Shine [A1.13]

ARRE, V.F. ART (2000)	D	ilot Card		
Nama of voccals LIA		Data	Port	
Name of Vessel: HA	ATSU SHINE	Date:	Port:	20 564
Call sign:iii K24 10	m (Droft off	multionnage:	39,004
Diantitore:	_m() Dram an:		==)
Displacement: 10	P.602 K/Tons	Captain's nar	ne: RAU, WEI-L	LEE
Deadweight:	6,093 N/10hs	Captain's signatu	ire: <u>A X 462</u>	4
	Ship'	s Particulars		
L.O.A. 300.00 m (984'	3.0") Anchor chair	h: Port 13.5 Shackles	Starboard 13.5 St	hackles
Breadth:42.8 m (140 '")		Stern: NIL SI	hackles
Bulbous bow: Yes (_9.	.07_m)/No	(1 Shackle = 27.5m	/15 fathoms)	
	211.37	m		· •
		Alr		
42.8π		Draft		
			° [9.37
·	- Parallel W/L	ftt		
	Londod 100.6 m co.1	-		-
	Ballast m on 7	.68 M.W.L.	$1 \cup f$	
	ALL ALL 355	No. 0	4 000 loss X 400 DD	
Type of Engine: MITSUBI	SHISULZER	Max. Power: MCR: 6	24,900 KW X 100 RP	100
10 5710			A 44414 M AA E D.B.	
10 RTA9	<u>6C</u>	NOR: 4	9,410Kw X 96.5 RP	M
10 RTA9 Maneuvering Eng Order	RPM/Pitch	NOR: 4 Spec	9,410Kw X 96.5 RP od (Knot)	M
10 RTA9 Maneuvering Eng Order	RPM/Pitch	Loaded	9,410Kw X 96.5 RP od (Knot) Ballast	M
10 RTA9 Maneuvering Eng Order Full Ahead	RPM/Pitch 52	NOR: 4 Spec Loaded 15.0	9,410Kw X 96.5 RP od (Knot) Ballast 15.0	M
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead	60 RPM/Pitch 52 42	NOR: 4 Spee Loaded 15.0 12.0	9,410Kw X 96.5 RP ed (Knot) Ballast 15.0 12.0	M
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead	60 RPM/Pitch 52 42 32	NOR: 4 Spec Loaded 15.0 12.0 9.0	9,410Kw X 96.5 RP ad (Knot) Ballast 15.0 12.0 9,0	PM
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead	52 52 42 32 24	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0	9,410Kw X 96.5 RF ed (Knot) Ballast 15.0 12.0 9.0 7.0	PM
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern	52 52 42 32 24 24 24	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern:	9,410Kw X 96.5 RF ed (Knot) Ballast 15.0 12.0 9.0 7.0 3.5	Min.
10 RTA9 Maneuvering Eng Order Fuli Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern	RPM/Pitch 52 42 32 24 24 32	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast	9,410Kw X 96.5 RF ed (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tem: 4.2	Min.
10 RTA9 Maneuvering Eng Order Fuli Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern	S2 42 32 24 24 32 24 22 24 32 24 32 24 32 24 32	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut	9,410Kw X 96.5 RF ad (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tem: 4.2 tive Starts: 9	Min. Min. Times
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern	S2 42 32 24 32 24 32 24 52	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM:	9,410Kw X 96.5 RF ad (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 tive Starts: 9 23 with 6.4	Min. Min. Times _Knots
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern	S2 42 32 24 32 24 32 24 32 70	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power:	9,410Kw X 96.5 RF ed (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 two Starts: 9 23 with 6.4 70 % of	Min. Min. Times Knots Ahead
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern	S2 42 32 24 32 24 32 24 32 52 70 Steeri	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars	9,410Kw X 96.5 RF ed (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 live Starts: 9 23 with 6.4 70 % of	Min. Min. Times Knots Ahead
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Type of rudder: DFT-4	RPM/Pitch 52 42 32 24 32 42 52 70 Steeri 75 (SEMI BALLANCE)	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle:	9,410Kw X 96.5 RF ad (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tem: 4.2 twe Starts: 9 23 with 6.4 70 % of 35	Min. Min. Times Knots Ahead
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Type of rudder:	S2 42 32 24 32 24 32 24 32 52 70 Steeri 75 (SEMI BALLANCEI 28 Sec.	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle: Rudder angle for neutral	9,410Kw X 96.5 RF ad (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 live Starts: 9 23 with 6.4 70 % of 35 leffect: 0	Min. Min. Times Knots Ahead Deg Deg
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Full Astern Type of rudder:	S2 42 32 24 32 24 32 42 52 70 Steeri 75 (SEMI BALLANCEI 28 Sec. Kw (1542 x 2 = 30)	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle: Rudder angle for neutral N85 HP) Stern: NII	9,410Kw X 96.5 RF ad (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 live Starts: 9 23 with 6.4 70 % of 35 leffect: 0 . Kw (NIL	Min. Min. Times Times Knots Ahead Deg. Deg. HP)
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Full Astern Type of rudder:	S2 42 32 24 32 24 32 42 52 70 Steeri 75 (SEMI BALLANCE) 28 Sec. Kw (1542 x 2 = 30) eady and Other Information	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: DMax. angle: Rudder angle for neutral 85 HP) Stern: Nil mation:	9,410Kw X 96.5 RP of (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 term: 4.2 tive Starts: 9 23 with 6.4 70 % of 35 leffect: 0 Kw (NIL	Min. Min. Times Times Knots Ahead Deg Deg HP)
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Full Astern Type of rudder:		NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle: Rudder angle for neutral 85 HP) Stern: Nill mation: Steering pear.	9,410Kw X 96.5 RP od (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 live Starts: 9 23 with 6.4 70 % of 35 leffect: 0 Kw (NIL	Min. Min. Times Times Toeg Deg HP)
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Full Astern Type of rudder: DFT-4 Hard-over to hand-over: Thruster: bow:150 x 2 Checked if Aboard and RA Anchor: ()	8C RPM/Pitch 52 42 32 24 32 42 52 70 Steeri 75 (SEMI BALLANCE) 28	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: Ing Particulars D) Max. angle: Rudder angle for neutral 85 HP) Stern: Nill mation: Steering gear:	9,410Kw X 96.5 RP od (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 dive Starts: 9 23 with 6.4 70 % of 35 leffect: 0 Kw (NIL	Min. Min. Times Knots Deg Deg HP)
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Type of rudder: DFT-4 Hard-over to hand-over: Thruster: bow:	6C RPM/Pitch 52 42 32 24 32 42 52 70 Steeri 75 (SEMI BALLANCE) 28Sec. Kw (1542 x 2 = 30) eady and Other Infor whistle: () 10cm: ()	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle: Rudder angle for neutral 185 HP) Stern: NII mation: Steering gear. No. of Power Units Ope Gurg Compase.	9,410Kw X 96.5 RF od (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 dive Starts: 9 23 with 6.4 70% of 35 leffect: 0 Kw (NIL) preting: (3)	Min. Min. Times Knots Ahead Deg Deg HP)
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Full Astern Full Astern Full Astern Checked if Aboard and Read Anchor: Anchor:) Redar, 3cm:) Indicators, Rudder:)	Steeri 70 Steeri 70 Steeri 70 Steeri 70 Steeri 70 Steeri 70 Steeri 28 Sec. Kw (1542 x 2 = 30 eady and Other Infor whistle: () 10cm: () pm: ()	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle: Rudder angle for neutral 85 HP) Stern: NII mation: Steering gear: {	9,410Kw X 96.5 RF od (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 tive Starts: 9 23 with 6.4 70 % of 35 l effect: 0 	Min. Min. Times Knots Ahead Deg Deg HP)
10 RTA9 Maneuvering Eng Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Ahead Dead Slow Astern Slow Astern Half Astern Full Astern Indicators, Budder: Indicators, Rudder: Sonopler Vos Attern	BC RPM/Pitch 52 42 32 24 32 24 32 42 52 70 Steeri 25 70 Steeri 28 sec. Kw (1542 x 2 = 30 eady and Other Infor whistle: 10cm: Y IDCm: Y Dual Avie:	NOR: 4 Spec Loaded 15.0 12.0 9.0 7.0 Time Limit Astern: Full Ahead to Full Ast Max. No. of Consecut Minimum RPM: Astern Power: ng Particulars D) Max. angle: Rudder angle for neutral 85 HP) Stern: NII mation: Steering gear: (9,410Kw X 96.5 RF ad (Knot) Ballast 15.0 12.0 9.0 7.0 3.5 tern: 4.2 two Starts: 9 23 with 6.4 70 % of 35 l effect: 0 	Min. Min. Times Times Toeg Deg Deg Deg HP)

14. MONTE CERVANTES

Abb. A1.14: Monte Cervantes [A1.14]

HAMBURO MOD							
Monte Cervantes		Form	QM - 1	Fitol } ?	Page 1/1	Revision	0
Approved 01.11.04	QM :	Ship / Form		P	lot Informat	ion Card	
,			-		~		
	PI	lot In	orma	ation	Card	, ¹ , ¹	· ·
Ship's name: MON	TE CER	VANTES	Call sign	. DHTK	Mast	er: AFA	(, ମ୍ବରହ (
OFF No. : 19996	MO No.	: 9283186	PO	RT OF R	EGISTRY:	HAMBURG /	GERMANY
Draught: FWD	n in	$\mathbf{n} \in \mathbb{R}^{+}$	n	AFT:	$\mathbb{Z}^{n}(Q)$	m	ft
GROSS T. = 69.132	2			NET T.	= 31.228		
SUMMER DISPL. = 88	3.7 4 7 п	nt		SUMMER	R DEADWE	IGHT = 64.98	53 mt
		Shi	p's Par	ticulara	0		
Length overall: 272.0	Bm	Breadth	40.08 m		Depth mo	ulded : 19.46	m
		DI GUIGUI.					
68.70 m+c		_ 213.30 m _		,	\$9,53 m		Airdraught m
40.08 m 1500 kW			2000 KW				ft
			2720 HP	(Internet			-
					The Pool	D RIGHTHANDED	
Turn of Facilary 2 Chrole	Discol	Madaine			TREMAN	22.040 HD)	(00.000
Managenering Engine	e Diesei	DDM	anoeuver P	10AD	ED	DALLAS	TUZ KPM
Full Abead Se	2	98.5		23.8		DALLAS	4
Full Ahead		67		17.7		18	2
Half Ahead		51		13.7		14	3
Slow Ahead		40		10.0		10	.8
Dead Slow Ahe	ad	32		6.9		7.1	B
Dead Slow Aste	m	32	Time Lin	nit Aster	n:	none	
Slow Astern		40	Full Ahe	ad to Fu	II Astem:	13' 00"	
Half Astern		51	Max. No	of Con	sec. Starts	13	
Full Astern		67	Minimun	n RPM:		26 min '	1,
			Non effe	ctive rud	ider speed	~ 6.0 Kr	1
		Ste	oring Par	ticulars			,
Type of Rudder: Bala	1C8	Maximu	m Angle:	35°	Hard Ov	ver to Hard over	: 24/12 sec.
Rudder Angle for neutra	al effect:	0° Bow Thr	: 2000 kl	N (2720 I	HP) Sterr	Thr. : 1500 kW	(2040 HP)
		сн	ECKED AND	READY			
Anchors (P13/814)		Engine talega	abhs	-	Echosour	nder	
Whistle		Steering gear	udder		Compass	eystem	
AIS AIS		Rioreators: R	PM		VHF Ch:	upio error z	
golbeedS		R	DT		GPS		
PORT:		DATE :			RANK / SK	3N :	
PILOT SIGNATURE:			¥				
VMATES/SharedDeca/OM - Form	a-MOCERNI	em - programmlu	lack formeVPI	iot Card Imo.	DOC		
						<u> </u>	

15. MONTE ROSA

Abb. A1.15: Monte Rosa [A1.15]

Ship's name: MONTE ROSA	Call sig	n: DGHJ Maste	er : Koehler,U.
OFF No. : IMO No. : 92832	15 PC	ORT OF REGISTRY: HAME	URG /GERMANY
Draught: FWD: 10.90 m	ft	AFT: 11.20 m	ft
GROSS T. = 69.132		NET T. = 31.228	
SUMMER DISPL. = 88.747 mt		SUMMER DEADWE	IGHT = 64.888 mt
	Ship	o's Particulars	
Length overall: 272,02 m	Breadth:	40,01 m Depth mo	ulded : 19.46 m
< 58.70 m	213.30 m		Airdraught
			m
		69,53 m	
0.01 m 1500 kW		2000 kW	ft
2040 HP		2720 HP	
		FIXE	D RIGHTHANDED
Type of Engine: 2Stroke Diesel	Maximum M	anneuver Power: 45 765 kW	(62 240 HP) at 102 RPM
Maneuvering Engine order	RPM		BALLAST
Full Ahead Sea	98.5	23.8	24.4
Full Ahead	67	17.7	18.2
Half Ahead	51	13.7	14.3
Slow Ahead	40	10.4	11.2
Dead Slow Ahead	32	7.3	8.2
Dead Slow Astern	32	Time Limit Astern:	none
Slow Astern	40	Full Ahead to Full Astern	13' 00"
Half Astern	51	Max. No. of Consec. Star	13
Full Astern	67	Minimum RPM:	26 min ⁻¹ 5.7 knts
		Non effective rudder speed	~ 6.0 Kn
the second se			
	Sto	oring Particulare	
Type of Rudder Balance	Ste Maximu	ering Particulars um Angle: 35° Hard C	over to Hard over: 24/12 sec.
Type of Rudder: Balance	Ste Maximu	ering Particulars Im Angle: 35° Hard C	over to Hard over: 24/12 sec.
Type of Rudder: Balance Rudder Angle for neutral effect:	Ste Maximu 0° Bow Th	ering Particulars Im Angle: 35° Hard C r. : 2000 kW (2720 HP) Ste	over to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP)
Type of Rudder: Balance Rudder Angle for neutral effect:	Ste Maximu 0° Bow Th CHE	ering Particulars Im Angle: 35° Hard C r. : 2000 kW (2720 HP) Ste ECKED AND READY Increase Steps of the second	over to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP)
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14)	Ste Maximu 0° Bow Th CHE CHE	ering Particulars Im Angle: 35° Hard C r. : 2000 kW (2720 HP) Ste ECKED AND READY legraphs I Echo soun Dear Fit Compase	wer to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP) der system
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14)	Ste Maximu 0° Bow Th CHE CHE CHE Steering of Children	ering Particulars Im Angle: 35° Hard C r.: 2000 kW (2720 HP) Ste ICKED AND READY legraphs IC Echo soun gear IC Compass : Rudder IC Constant of	ver to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP) der □
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14) Whistle ARPA 3 cm 10 cm	Ste Maximu 0° Bow Th CHE Engine te Steering f Indicators	ering Particulars Im Angle: 35° Hard C im Angle: 35° Hard C ic KED AND READY Ste legraphs Image: Echo soun gear Image: Compass i: Rudder Image: Compass RPM Image: VHF Ch:	ver to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP) der □- system □- yro error ± <u>0</u> ° □- <i>Δ</i> (<i>Δ</i> / <i>Δ</i> , ° □-
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14) Whistle ARPA 3 cm 10 cm AlS Speed log Z	Ste Maximu 0° Bow Th CHE Engine te Steering of Indicators	ering Particulars Im Angle: 35° Hard C r.: 2000 kW (2720 HP) Ste ECKED AND READY legraphs Image: Echo source gear Image: Compassion Image: Compassion Image: Compassion Image: RPM Image: Compassion ROT Image: GPS	wer to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP) der □ system □- tyro error ± ① \$c./.o.f. □
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14) Whistle ARPA 3 cm 10 cm AlS Speed log M/E	Ste Maximu 0° Bow Th CHE Engine te Steering Indicators	ering Particulars Im Angle: 35° Hard C Im Angle: 35° Im Compase Im Compase: 10° Compase Im Angle: 10° Compase<	wer to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP) der □
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14) Whistle ARPA 3 cm 10 cm AlS Speed log M/E	Ste Maximu 0° Bow Th CHE F Engine te Steering f Indicators	ering Particulars Im Angle: 35° Hard C r.: 2000 kW (2720 HP) Ste ECKED AND READY legraphs If gear If Compassi If RPM If ROT If GSter If Ster If Ster If Ster If	der Image: Constraint of the sector of the
Type of Rudder: Balance Rudder Angle for neutral effect: Anchors (P13 / S14) Whistle ARPA 3 cm 10 cm AlS Speed log M/E PORT : ARR. HAMBURG	Ste Maximu 0° Bow Th CHE F Engine te Steering f Indicators	ering Particulars Im Angle: 35° Hard C Fr.: 2000 kW (2720 HP) Ste ECKED AND READY legraphs :: Echo soun gear :: Compass :: RUdder :: Compass : RUdder :: Compass : ROT :: Constant (ROT :: Consta	wer to Hard over: 24/12 sec. m Thr. : 1500 kW (2040 HP) der ger system wro error ± 0 ster

16. NYK SIRIUS

Abb. A1.16: Nyk Sirius [A1.16]

COL	UMBIA SHIPMANAGEMENT	Form Code : SNA08-MB-A Issue date : 8/2002 Doc ref : OPS/5/SNA/17
	DU OT CADD	rage . 1
	PILOI CARD	File : NB.1
SHIP's PARTICULARS:	PORT:	HAMBYRG in/out
Name: NYK S	IRIUS Flag: PANAMA	Call sign: 3FJP8
Displacement: 03.258	tonnes Deadweight:	tonnes year built: 1998
Length OA 299.9	(m) Breadth 40.0 (m) Bulbous b	OW Ves
Draught fwd 7,4/	(m) Draught aft (0.52 (m) Draught i	amidshins 7.2/(= (m)
Port anchor	(chaokloc) Sand anabor 12 (ch	aclder); (1 shackle = 27 dm)
	(sinches) Still anchoi	icides); (1 shackie – 27.4m)
	228.25m m	
4	N/A ITT	† †
40.0	Draught:	
m	50.62	m m 60.47
*	<u> </u>	-
	Manifold	실 ~ 듣니
Par Gross Tonnage = 76 847	aliel W/L	
Net Tonnage = 30,006	Ballast m m	Keel to Main Deck= 23.98m
		Test to Main Pook - 25.761
ENGINE:		
Type: MAN B&W 12K90MC MA	RKVI Maximum power 52956 kW	61201 hp @ 89rpm
rpm / pitch	loaded speed ballast speed	
full ahead 43	11.6 kts 12 kts En	gine critical rpm NONE
half ahead 36	9.8 kts 10 kts Ma	No of consecutive starts 12
slow ahead 31	8.3 kts 85 kts	
Dead slow ahead 26		
Dead slow astern 26		
slow astern 31	1	
half astern 36		
addi asterini 50	Tir	ne limit astern [N/A] (min)
iuli astern 43	100 (% of full ahead power) Time full	ahead to full astern(sec)
STEERING:		
Rudders: 1 (num	aber) SEMI-BALANCE RUDDER (type)	35 maximum angle
Time hard-over to hard-over	24 sec Rudder angle for neutral effect	0
Propellers 1	(number) Direction of turn right	introllable nitch
Thrusters 2	(number) Bow nower 4466by (2246 total 0.11/070	Starp power
Steering neculiarities	Janmeer, pour houses anough StreekM (KW/HP)	, stern power NA
FOUIPMENT CUECUES	A DEADY FOR USE	
Anchore	Charles Charles T	
Anchors .	Cleared away VI	11 7/3
A-Band radar	Yes Fi	1gs 777
S-Band radar	YCY ARPA YES W	histle Yey
Speed log	Water/Ground Single axis / dual axis	\$.
Echo sounder	XS Er	agine telegraphs YES
Electronic position - fixing	YF Type GPS	
Compass system	YLY Gyro compass error	
Steering gear	Number of power units in use	
Pudder/PDM/DOT i-diaster	Number of power units in use 2	
Rudden KPM/KO1 indicators	Mooring winches and lines My	
EQUIPMENT DEFECTS R	ELEVANT TO SAFE NAVIGATION & OTHER IN	PORTANT DETAILS:
	-NOME -	
	10010	
Master's Name: CAP 7. 1	ery DUBSIN Pilot's Name: HETN BHHREND	1412 Date: 12 JAN. 2005

17. MV OOCL Chicago

Abb. A1.17: MV OOCL Cicago [A1.17]

	A PI	LOT CARD	BRIDGE & DECK PROCEDURES
Vessel: <u>M.V.OOCL</u> Lt. Displacement : 25,02 Gross Tonnage : 66,67 Draught Fwd :	Chicago 7 M/T 7 M. (Ft.	CALL SIGN : <u>VRWO2</u> Deadweight : 67,278 M/T Net Tonnage : 39,516 In.) Draught Aft :	Year Built : <u>2000</u> Displacement : 92,313 M/T IMO Number : 9199270
110 8			
	SHI	P'S PARTICULARS	
Length Overall : 277.3	5 Meters	Anchor Chain Port Side	: 11 Shackles
Breadth : <u>40.00</u>	Meters	Anchor Chain Stbd Side	12 Shackles
Bulbous Bow : <u>YES</u>		I Shackle	27.4 Meters or 15 Fathoms
40 cm	lel Waterlinem		53 95 M
Ballast TYPE OF ENGINE : TYPE OF PROPELLER :	MAN B&W 6 BLADES	MAX. POWER: <u>74,640</u>	PS x 94 RPM
Ballast TYPE OF ENGINE : TYPE OF PROPELLER :	MAN B&W 6 BLADES	MAX. POWER: <u>74,640</u>	PS x 94 RPM SPEED
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE	MAN B&W 6 BLADES	MAX. POWER: <u>74,640</u> LOADED	PS x 94 RPM SPEED BALLAST
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA	MAN B&W 6 BLADES 5 ORDER RPM 4D 36	MAX. POWER: <u>74,640</u> LOADED 14.9 Knots	PS x 94 RPM SPEED BALLAST 15.5 Knots
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA	<u>MAN B&W</u> <u>6 BLADES</u> S ORDER RPM AD 56 AD 47	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA	MAN B&W 6 BLADES CORDER RPM AD 56 AD 47 AD 37	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots 10.3 Knots
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead Slow AHEA	<u>MAN B&W</u> <u>6 BLADES</u> CORDER RPM AD 36 AD 47 AD 37 AD 27	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots 10.3 Knots 7.5 Knots
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead Slow AHEA Dead Slow AHEA	<u>MAN B&W</u> <u>6 BLADES</u> CORDER RPM AD 56 AD 47 AD 37 AD 27 R.M 27	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots Astern Power	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots 10.3 Knots 7.5 Knots 100 % Ahcad
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead BLA	<u>MAN B&W</u> <u>6 BLADES</u> 3 ORDER RPM AD 56 AD 47 AD 37 AD 27 2.3 2 ⁵ 2.3 3 ⁵	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots Astern Power Time Limit Astern	PS x 94 RPM SPEED 15.5 13.0 10.3 7.5 100 % Ahead 30
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead Slow AHEA DEAG AH	<u>MAN B&W</u> <u>6 BLADES</u> © ORDER RPM AD 56 AD 47 AD 37 AD 37 AD 27 2.3 3 2.4 3 2.4 3	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots Astern Power Time Limit Astern Full Ahead to Full Astern	PS x 94 RPM SPEED 15.5 13.0 10.3 7.5 100 % 30 Minutes 280 Seconds
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead DEAD DEAD DEAD DEAD DEAD DEAD DE	<u>MAN B&W</u> <u>6 BLADES</u> <u>6 ORDER</u> RPM <u>4D</u> <u>56</u> <u>4D</u> <u>47</u> <u>4D</u> <u>37</u> <u>4D</u> <u>27</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u></u>	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots Astern Power Time Limit Astern Full Ahead to Full Astern Max. number of consec.	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots 10.3 Knots 7.5 Knots 10.3 Knots 20.0 % Ahead 30 Minutes n 280 Seconds starts 6 Times
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead Slow AHEA NOTICE REQUIRED TO F	<u>MAN B&W</u> <u>6 BLADES</u> S ORDER RPM AD 56 AD 47 AD 37 AD 27 2A 27 2A 27 2A 37 2A 37 2A 47 2A 56 RV 47 RV 56 REDUCE FROM SEA	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots Astern Power Time Limit Astern Full Ahead to Full Astern Max. number of consec. SPEED TO FULL MANOEUVF	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots 10.3 Knots 7.5 Knots 10.0 % Ahead 30 Minutes n 280 Seconds starts 6 Times RING 30 Minutes
Ballast TYPE OF ENGINE : TYPE OF PROPELLER : MANOEUVRING ENGINE Full AHEA Half AHEA Slow AHEA Dead Slow AHEA Coccl Slow AHEA Coccl Slow ANEA Coccl	MAN B&W 6 BLADES 6 ORDER RPM AD 36 AD 47 AD 37 AD 27 23 24 25 24 37 25 24 36 REDUCE FROM SEA 194 IMI-BALANCED 160 KW or 2680 HP	MAX. POWER: 74,640 LOADED 14.9 Knots 12.5 Knots 10.0 Knots 7.2 Knots Astern Power Time Limit Astern Full Ahead to Full Astern Max. number of consec. SPEED TO FULL MANOEUVF Min. RPM / Speed : Max. Rudder Angle : Rudder from hard-over t	PS x 94 RPM SPEED BALLAST 15.5 Knots 13.0 Knots 10.3 Knots 10.3 Knots 10.4 Knots 10.9 % Ahead 30 Minutes n 280 Seconds starts 6 Times RING 30 Minutes 24 Revolutions / 7.0 Knots 35 Degrees o hard-over: 25 Seconds

18. OOCL MALAYSIA

Abb. A1.18: OOCL Malaysia [A1.18]

E.R. SCIUFFAI	DRT GMBH & CH.		PILOT	CARD		ДАТЕ 30 547 2004	
Vessel:	OOCL MALAY	YSIA	Port:	HAM BURG.		Arrival Departu	are
			SHIP'S PARTIC	ULARS			
Gross Tns:	66289 g.t.	NRT:	33235 n.t.		Flag :	LIBERIA	
Call sign:	ELZW9	D	pispl: 92773.6 mt	Deadweight	68071.6 mt	Year of built: 200	0
Draft Fwd: LOA	13.50 m	n FW An	Draft Aft: 13 chor chain: Port	SOM FR	Air Draft: Starboard	46 · 35 m 14 shackles	
Breadth	40 m		Bow Thruster: 20	00 Kw / 2681 Hp		Stern <u>NIL</u> shad	:kles
Bulbous bow	r: 🗹 Yes	/ 🗆 No		(1 shackle	=27.5	m <u>15.04</u> fat	homs)
40.0 m		O Paralle load Bal	el W/L ded 120 m last 60 m	·Airdraft			×
Type of Engi	ine: MAN B&	W 12K90M	IC Maximum Power	MCR 54840KW	NCR 46650	kw @ 94 RPM - 23.5 Kt	
Type of Engi Manocuveri	ine: MAN B&	W 12K90M	IC Maximum Power RPM/pitch	MCR 54840KW	NCR 46650	kw @ 94 RPM - 23.5 Kt knots) Ballast	
Type of Engi Manocuveri	ine: MAN B& ng engine order Full ahead	W 12K90M	IC Maximum Power RPM/pitch 60	MCR 54840KW	NCR 46650 Speed (16.6 kts	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts	
Type of Engi Manocuveria	ine: MAN B& ng engine order Full ahead Half ahead	W 12K90M	IC Maximum Power RPM/pitch 60 45	MCR 54840KW	NCR 46650 Speed (16.6 kts 10.7 kts	kov @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts	
Type of Engi	ine: MAN B& ing engine order Full ahead Half ahead Slow ahead	W 12K90M	IC Maximum Power RPM/pitch 60 45 35	MCR 54840KW	NCR 46650 Speed (16.6 kts 10.7 kts 8.8 kts	ww @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts	
Type of Engi Manocuverin	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow ahead	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27	MCR 54840KW	NCR 46650 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts	w @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts	
Type of Engi	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow astern	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27	MCR 54840KW	NCR 46650 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE	w @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min	
Type of Engi	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow astern Slow astern	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 27 35	MCR 54840KW Loaded Time limit astern. Full shead to astern.	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds	
Type of Engi	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 35 45	MCR 54840KW Loaded Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rts	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min. seconds 15 / 6 (eng. rm / bridge)	
Type of Engi	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 35 45 45 60	MCR 54840KW Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta Minimum RPM	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rtts nil	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds 15 / 6 (eng. rm / bridge)	
Type of Engi Manocuveri	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern <i>REVOLUTIONS</i>	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 35 45 60 60	MCR 54840KW Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta Minimum RPM Astern power	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rts nil approx 60	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds 15 / 6 (eng. rm / bridge) % ahead	
Type of Engi Manocuveri CRITICAL I Bow Thruste	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow ahead Dead slow astern Slow astern Half astern Full astern <i>REVOLUTIONS</i>	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 35 45 60 45 100 100 100 100 100	MCR 54840KW Loaded Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta Minimum RPM Astern power Bowthruster imm	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rts nil approx 60 ersion 5.25M.	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds 15 / 6 (eng. rm / bridge) % ahead Prop immersion 8.64M	
Type of Engi Manocuveri	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow astern Slow astern Half astern Full astern REVOLUTIONS er Cap. 2000KW ne dover to hardover,	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 35 45 60 1 t speeds above 5 kts ath 2 steering Motors . }	MCR 54840KW Loaded Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta Minimum RPM Astern power Bowthruster imm Vinumum steerage approx	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rtts nil approx 60 ersion 5.25M, x 3.5 kts.	kw @ 94 RPM - 23.5 Kt knots) Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds 15 / 6 (eng. rm / bridge) % ahead Prop immersion 8.64M	
Type of Engi Manocuveri	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow astern Slow astern Half astern Full astern REVOLUTIONS er Cap. 2000KW nd dover to hardover. Capt. Milorad G	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 35 45 60 t speeds above 5 kts ath 2 steering Motors . 1	MCR 54840KW Loaded Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta Minimum RPM Astern power Bowthruster imm Vinnumum steerage approx	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rts nil approx 60 ersion 5.25M, x 3.5 kts.	Ballast Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds 15 / 6 (eng. rm / bridge) % ahead Prop immersion 8.64M 10.0 kts	
Type of Engi Manocuveri CRITICAL J Bow Thruste Steering hard Master : Remarks :	ine: MAN B& ng engine order Full ahead Half ahead Slow ahead Dead slow astern Slow astern Half astern Full astern REVOLUTIONS er Cap. 2000KW nd dover to hardover, Capt. Milorad O The Pilot eard to	W 12K90M	IC Maximum Power RPM/pitch 60 45 35 27 27 35 45 60 t speeds above 5 kts ath 2 steering Motors . 1 d to the pilot upon boardin	MCR 54840KW Loaded Loaded Time limit astern. Full ahead to astern. Max No. of consec. sta Minimum RPM Astern power Bowthruster imm Vinumum steerage appro-	NCR 466500 Speed (16.6 kts 10.7 kts 8.8 kts 7.5 kts NONE 665 rtts nil approx 60 ersion 5.25M, x 3.5 kts.	Ballast Ballast 17.4 kts 11.9 kts 9.3 kts 8.0 kts min seconds 15 / 6 (cng. rm / bridge) % ahead Prop immersion 8.64M	

19. MS TAMERLANE

Abb. A1.19: MS Tamerlane [A1.19]

W.			ý.		Rev 0520
Barber Ship Managem	ent <u>PI</u>	LOTINFORMATI	ON CARL)	
VESSEL M/S TAN	VERLANE	PORT HAM BU	RG DAT	TE 18/12	103 VOY.NO EF324
VESSEL'S DETAILS				<i>,</i>	
Call Sign LA	OU5	Year Built 2001	1		
Displacement (Sur	nmer)64299	Deadweight (Sum	mer) 3	39400.5	
Length Overall (m)	240.6	Breadth (m) 32.2	6	De	pth (m) 32.45
Port Anchor (shac	KIES) 12	Starboard Anchor	(shackles)	13	
DRAUGHT (m)					
Forward 7.95	m Ail 9.30	M Amidships	8.63 m	Air Dra	aughi
33.6		240.6			
		163.2			
	1		<u>_</u>		1 VE
			100		20
			717		
					1
	15.6			L	Juiis metres
	ł				
	T				
Main Engine(s)1	Type B&W 8L70MC	Max. Power 28480	php at 106 RP	M	Critical RPM 25-31
nesition	PDM / DITCH	AREAD	Pailosi Cor	and (k)	ASTERN
FULL	90	18.9	103	seu (K)	90
HALF	70 .	14.8	15.4		70 .
SLOW	50	10.7	11.4		50
DEAD SLOW	35	7.1	7.8		35
MACHINERY					
Rudder(s) 1	Type SEMI-BA	ANCED SPADE		May And	nie 35
Propeller(s) 1	Type FIXED PI	TCH		Dir. of Tu	urn (Right/Left) RIGHT
Thruster(s) 2	Bow Power 1800kW	2500 hp)		Stern Po	wer 1800kW
BRIDGE EQUIPMEN	IT CHECKED PRIOR A	RRIVAL/DEPARTURE			
(Company Check Lis	1 B2/B3)				
Radar 1 (Sisle Ban	d) KELVIN HUGES MK	VX-RAND	ncludes Ams		
Radar 2 (Siale Ban	d) KELVIN HUGES MK	VIS-BAND	ncludes Arpa		
Radar 3 (State Ban	d) FURUNO FAR-2825	X-BAND	ncludes Arpa	51	
Speed Log - Single	/Dual Axis SINGLE		Water/Gro	ound Track	
Gyro Compass Er	ror				
Electronic Positio	n System Type 2X LE	ICA MX 412 DGPS			

20. XIN HONG KONG

Abb. A1.20: Xin Hong Kong [A1.20]

the second se					
	PILOT CAR	D SHEET 1 OF 2			
SHIP'S NAMEXIN HONG	KONG	DATE			
CALL SIGNVRCH	15	BUILT 06 TH FEB. 2007	2		
DRAUGHT: Fore	m	Aftm			
DEADWEIGHTT	onnes	DISPLACEMENT	Tonnes		
	SHIP'	S PARTICULARS			
L.O.A336.668	m ANCHOR (CHAIN: Port14	shackles		
BREADTH45.6m Starboard14shackles					
BULBOUS BOW Yes/No (I shackle =	m /1	5.037fathoms)		
45.6m Manifol		m Air Draught	62.0m		
Parallel Loaded B. 169.65 m Type of Engine MAN B&W Manoeuvring Engine Order	W/L allast 71.04 n 12K98MC-C Rpm/Pitch	Maximum Power <u>mcr 93</u> Spee	120 hp@104rpm d (knots) Ballast		
Parallel Loaded Bi 169.65m Type of EngineMAN B&W Manoeuvring Engine Order Full Ahead	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70	Maximum Power <u>mcr 93</u> Spee Loaded 18.07	120 hp@104rpm d (knots) Ballast 18.96		
Parallel Loaded B: <u>169.65</u> m Type of Engine <u>MAN B&W</u> Manoeuvring Engine Order Full Ahead Half Ahead	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60	Maximum Power <u>mcr 93</u> Spee Loaded 18.07 15.57	120 hp@104rpm d (knots) Ballast 18.96 16.34		
Parallel Loaded Bi <u>169.65</u> m Type of Engine <u>MAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Slow Ahead</u>	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45	Maximum Power Loaded 18.07 15.57 11.74	120 hp@104rpm id (knots) Ballast 18.96 16.34 12.33		
Parallel Loaded Bi 169.65_m Type of EngineMAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45 32	Maximum Powermcr 93 Spee Loaded 18.07 15.57 11.74 8.38	120 hp@104rpm ed (knots) Ballast 18.96 16.34 12.33 8.80		
Parallel Loaded Bi 169.65 m Type of Engine <u>MAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Ahead</u>	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45 32 32 32	Maximum Powermcr 93 Spee Loaded 18.07 15.57 11.74 8.38 Time Limit Astern	120 hp@104rpm .120 hp@104rpm		
Parallel Loaded Bi 169.65 m Type of Engine <u>MAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Slow Ahead Slow Astern</u>	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45 32 32 45	Maximum Powermcr 93 Spee Loaded 18.07 15.57 11.74 8.38 Time Limit Astern Full Ahead to Full As	.120 hp@104rpm		
Parallel Loaded Bi 169.65 m Type of Engine MAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Dead Slow Ahead Dead Slow Ahead Slow Ahead Slow Astern Half Astern	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45 32 32 32 45 60	Maximum Power _mcr 93 Spee Loaded 18.07 15.57 11.74 8.38 Time Limit Astern Full Ahead to Full As Max. no. of Consec.	.120 hp@104rpm		
Parallel Loaded Bi 169.65 m Type of Engine <u>MAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Ahead Slow Astern Half Astern Full Astern Full Astern Full Astern</u>	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45 32 32 45 60 70	Maximum Powermcr 93 Spee Loaded 18.07 15.57 11.74 8.38 Time Limit Astern Full Ahead to Full As Max. no. of Consec. Minimum RPM32	.120 hp@104rpm		
Parallel Loaded Bi 169.65m Type of EngineMAN B&W Manoeuvring Engine Order Full Ahead Half Ahead Slow Ahead Dead Slow Ahead Dead Slow Ahead Slow Astern Half Astern Full Astern Full Astern Full Astern	W/L allast 71.04 n 12K98MC-C Rpm/Pitch 70 60 45 32 32 45 60 70	Maximum Powermcr 93 Spee Loaded 18.07 15.57 11.74 8.38 Time Limit Astern Full Ahead to Full As Max. no. of Consec. Minimum RPM32 Astern PowerApp	.120 hp@104rpm		

21. XIN LOS ANGELES

Abb. A1.21 Xin Los Angeles [A1.21]

SHIP'S NAMEXIN LOS A	VILOT CAR	D SHEET 1 OF 2 DAT	Totalyne south		
CALL SIGN VRBX6	BUILT 22N	^D JUNE 2006			
DRAUGHT: Fore 127 DEADWEIGHT 885244	m Tonnes	Aft 13.7 m DISPLACEMENT 1	バーシティー Tonnes		
	SHIP'	S PARTICULARS			
L.O.A. 336.7	m ANCHOR	CHAIN: Port1	shackles		
BREADTH45.6	m	Starboard 1	4 shackles		
BULBOUS BOW Yes/No (I shackle =	27.5m /1	5.037fathoms)		
74.8m Manifol Varallel Loaded Be 169.65 m	261.9m	Air Draught Air Draught Air Draught Air Maximum Power _mcr 93	62.0r		
Manoeuvring Engine Order	Rpm/Pitch	Spee	ed (knots)		
		Loaded	Ballast		
Full Ahead	70	18.00	18.90		
Half Ahead 60 15.57 16.34					
Slow Ahead 45 11.74 12.37					
Dead Slow Ahead 32 8.38 8.80					
Dead Slow Ahead 32 Time Limit Astern <u>no</u> min					
Slow Astern 45 Full Ahead to Full Astern 530 sec					
Half Astern	60	Max. no. of Consec.	Starts <u>13/6(eng rm/bridge)</u>		
Full Astern	70	Minimum RPM 32	<u>8.4</u> kts		
		Astern Power <u>Ap</u>	prox 70 % ahead		

22. XING NING BO

Abb. A1.22: Xing Ning Bo [A1.22]

			PILOT	CARD			
SHIPS NAME	XIN NING BO	GROSS TONNAGE:		66433	NET TON	NAGE:	37567
CALL SIGN:	BPAS	DEAD WEIGHT:		69303T	SUMMER DRAFT		14.0 M
YEAR BUILT:	2003,8,10	SUEZ G	ROSS:	67676.98	SUEZ NET:		53458.26
		5	SHIP' PAI	RTICULARS			
LENGTH OVE BREADTH:	RALL: 279.90M 40.30M		ANCHOR	CHAIN: PO	ORT:		13 SHACKLES
BULBOUS BOY	W: YES		ENG	ST	ARBOAR	D :	14 SHACKLES
ENGINES T	YPE B&W 12	K90MC	ENG	MAXIMUM	POWEF	6019	2 KW (107.4RPM)
ANOEUVE	NG ENGINE OP	DED	PDM		SPEED	(KNOT	rs)
ANOEUVKI	ING ENGINE OR	DER	KT IVI	LOADED)		BALLAST
FULL	AHEAD		60	16.20			16.80
HALF A	HEAD		50	12.70			13.50
SLOW AHEAD			40	10.60			11.40
DEAD S	SLOW AHEAD		30	7.8			8.4
DEAD SLOW ASTERN			30	TIME LIMIT ASTERN NONE			NONE 483 SECONDS
SLOW ASTERN			45 MAX NO OF CONSEC STARTS MINIMUM REVS 30 REVS				
HALF A	STERN		65 ASTERN POWER AS PERCENTAGE 0F AHEAD POWER 85%				85%
FULL A	STERN		82	CRITICAL REVS REVS PROPELLER TO RIGHT			
		M 4	0.30	BRIDGE	187.4 279.90N 79.25 N	9M M 1 (P <u>arall</u>	
TYPE OF RUD HARD OVER T RUDDER ANG BOWTHRUST	DER :- SEMI BAL FO HARD OVER LE FOR NEUTRA ER 2200KW 706	STEE ANCED 26 S LEFFE 29	RING SECONDS CT: ZER(993 BHP	PARTICUL	ARS MAXIM	UM ANG	GLE:35 DEGREES
23. XIN SHANGHAI

Abb. A1.23: Xing Shanghai [A1.23]

P	ILOT CARD	Sheet 1 of 2										
SHIP'S NAME "XIN SHANGHAI" DATE 02 - Mar - 2017												
CALL SIGN BUILT Bth OCT. 2006												
DRAUGHT: Forem AftZ vie_m												
DEADWEIGHT 69440 Tonnes DISPLACEMENT 109 890 Tonnes												
SHIP'S PARTICULARS												
L.O.A. 336.7 m ANCHOR CHAIN: Port 14 shackles												
BREADTH 45.6 m Starboard14shackles												
BULBOUS BOW Yes/No (I shackle =m /fathoms)												
45.6m Manifold m Air Parallel W/L Draught 62.0m Loaded Ballast 62.0m 169.65 m 71.04 Type of Engine MAN B&W 12K98MC-C Maximum Power mcr 93.120 hp@104rpm												
Manoeuvring Engine Order	Rpm / Pitch	Spee	d (knots)									
Eull Abord	70	Loaded	Ballast									
Full Anead	70	15.0	18.9									
Hair Ahead	60	12.0	16.3									
Claur Alered	45	44.7	40.4									
Slow Ahead	45	11.7	12.4									
Slow Ahead Dead Slow Ahead	45 32	11.7 8.4	12.4									
Slow Ahead Dead Slow Ahead Dead Slow Ahead	45 32 32	11.7 8.4 Time Limit Ästern	12.4 8.8									
Slow Ahead Dead Slow Ahead Dead Slow Ahead Slow Astern	45 32 32 45	11.7 8.4 Time Limit Ástern, Full Ahead to Full Aste	12.4 8.8 <u>• .no min</u> tm <u>530 sec</u>									
Slow Ahead Dead Slow Ahead Dead Slow Ahead Slow Astern Half Astern	45 32 32 45 60	11.7 8.4 Time Limit Ästern Full Ahead to Full Aste Max. no. of Consec. S	12.4 8.8 <u>. no</u> min trn <u>530</u> sec tarts <u>13/6(eng rm/bridge)</u>									
Slow Ahead Dead Slow Ahead Dead Slow Ahead Slow Astern Half Astern Full Astern	45 32 45 60 70	11.7 8.4 Time Limit Ástern, Full Ahead to Fúll Aste Max. no. of Consec. S Minimum RPM32_	12.4 8.8 ∞min trnsosec tarts <u>13/6(eng rm/bridge)</u> 8.3kts									

Anhang 1: Abbildungsverzeichnis

[A1.1] http://www.neubrunn-schmidrueti.ch/emma-maersk-underway.jpg [A1.2] http://www.ship-photo.de/lib/exe/detail.php/schiffe:carcarrier: hual_seoul_20050912_1180268.jpg?id=schiffe%3Acarcarrier%3A9285495 [A1.3] http://www.richard-photography.nl/files/MSC%20Christina@RWISSE.jpg [A1.4] http://www.simplonpc.co.uk/OrwellRiverCruises/MSC-Shanghai 20060916-107 900.jpg [A1.5] http://bildarchiv-hamburg.de/hamburg/hafenelbe/hafen/13 containerschiff-schlepper/11 21361 containerriese-schlepper-hafen.jpg http://elbe.el.ohost.de/700x300_hyundaicolombo_s01_2007_01.jpg [A1.6] [A1.7] http://www.vesseltracker.com/de/ShipPhotos/412136-Mv-Chaiten-8700230.html [A1.8] http://shipsandharbours.com.s3.amazonaws.com/12115.jpg http://www.iimsshippingwebsite.co.uk/thames/cmacgmnilgai03.ipg [A1.9] [A1.10] http://www.shipfoto.co.uk/images/2008%20Photos/E-R-Amsterdam-7-Oct-2008.jpg [A1.11] http://www.containershipping.nl/images/ships/everdeluxe01.jpg http://www.vesseltracker.com/de/ShipPhotos/190166-Golden-Gate-Bridge-9224506.html [A1.12] http://www.containershipping.nl/images/ships/ hatsushine01.jpg [A1.13] [A1.14] http://upload.wikimedia.org/wikipedia/commons/ archive/b/bd/20090608001826!Monte cervantes.jpg http://upload.wikimedia.org/wikipedia/commons/9/99/Hamburg Sued Monte Rosa Burchardkai 750px 5333.jpg [A1.15] http://www.marinetraffic.com/ais/de/ shipdetails.aspx?MMSI=413057000 [A1.16]

- [A1.17] http://photos1.blogger.com/blogger/6215/3488/1600/ Xin%20Los%20Angeles.0.jpg
- [A1.18] <u>http://www.balot-pictures.com/Xin%20Hong%20Kong.html</u>
- [A1.19] <u>http://www.vesseltracker.com/en/ShipPhotos/66638-Tamerlane-9218648.html</u>
- [A1.20] http://media.shipspotting.com/uploads/thumbs/rw/825014_800/Ship+Photo+OOCL+MALAYSIA.jpg
- [A1.21] http://www.termaloma.com/HT2/images/OOCL%20CHICAGO.jpg
- [A1.22] http://www.containershipping.nl/images/ships/nyksirius01.jpg
- [A1.23] <u>http://img.fotocommunity.com/photos/12365653.jp</u>

Pilot Card Nr	1	2	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	MIN	ΜΔΧ
vom	2006	2007	2004	2007	J KA	k A	2007	2007	2006	2006	k A	2002	k A	2006	2007	2005		2004	2003	k A	2006	k A	2007	2002	2007
Hafen	Bremen	Bromon	Bromon	Bromon	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	Hamburg	2002	2007
	Diemen	Diemen	Diemen	Diemen	Tiamburg	Tlamburg	Tiamburg	Tiamburg	Tiamburg	Tiamburg	Tiamburg	GOLDEN	Tiamburg	Trainburg	Tiamburg	Tiamburg	Tiamburg	Tiamburg	Tlamburg	Tiamburg	Tiamburg	Tiamburg	Trainburg		
	Emma	HUAL	MSC	MSC	HYNDAI	HYNDAI		CMA CGM	CMA CGM	E.R.	EVER	GATE	HATSU	MONTE	MONTE		M.V.OOCL	OOCL	MS	XIN HONG	XIN LOS		XIN		
Schiff	Maersk	SEOUL	CHRISTINA	SHANGHAI	BRAVE	COLOMBO	MV CHAITEN	AEGEAN	NILGAI	AMSTERDAM	DELUXE	BRIDGE	SHINE	CERVANTES	ROSA	NYK SIRIUS	CHICAGO	MALAYSIA	TAMERLANE	KONG	ANGELES	XIN NING BO	SHANGHAI		
Baujahr	2006	2004	1998	2005	2007	2007	k.A.	1996	2003	2000	1996	2001	2005	2004	k.A.	1998	2000	2000	2001	2007	2006	2003	2006	1996	2007
DWT [t]	156900	9570	k.A.	71949	99123	80107,7	66280	35966	50828	67557	52090	71376	75246	64963	64888	76847	67278	68071	39400,5	k.A.	88974	69303	69440	9570	156900
Länge ü. a. [m]	397,71	199,9	242,81	274,67	339.62	303,83	276,2	201,5	k.A.	277	294.13	284,7	300	272,08	272,02	299	277	277	240,6	336	336,7	279	336,7	199,9	397,71
Main Engine																									ļ
[KW]	80080	k.A.	k.A.	57057	109	93120	54942	25400	36480	54840	66120	80000	54900	45765	45765	52956	74640	54840	21238	69440	69440	60192	69440	109	93120
[RPM]	102	105	98	104	102	104	100	104	104	112	102	90	100	102	102	89	94	94	106	104	104	107,4	104	89	112
Maneuvring Engine Order	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]	[U/min]		
Full Ahead	65	74	70	86	58	60	65	86	70	60	53	60	52	67	67	43	56	60	90	70	70	60	70	43	90
Half Ahead	50	56	55	70	48	50	50	70	60	45	44	50	42	51	51	36	47	45	70	60	60	50	60	36	70
Slow Ahead	35	38	45	52	40	42	40	52	45	35	33	35	32	40	40	31	37	35	50	45	45	40	45	31	52
Dead Slow Arlead	20	21	30	31	31	28	27	30	30	21	20	20	24	32	32	20	27	21	30	32	32	30	32	24	30
	[9/] vor	[9/] vor	[9/1.von	[0/] vor	[9/1 yes	[9/1 vor	[9/] vor	[9/1.vor	[0/1 yes	[9/1.von	[9/1 vor	[9/] vor	[9/1 vor	[0/1 vor	[9/1 yes	[9/1 vor	[9/1 vor	[9/1 yes	[9/1 yes	[0/1 vor	[9/1 vor	[9/] vor	[9/].vor		<u> </u>
Full Abaad					Tillidx	TITIDAX				Tilliax	Tillida		Tilliax			10.2	Tilliax			07.0		TITIAX		40.0	04.0
Fuil Allead	03,7	70,5	71,4	67.2	20,9	0/,/ /01	50,0	67.2	67,3	53,6	52,0	55.6	52,0	65,7 50,0	50,7	48,3	59,6	03,8	66.0	67,3	67,3	20,9	67,3 57,7	40,3	67.2
Slow Abead	49,0	36.2	45.0	50.0	47,1	40,1	40.0	50.0	43.3	40,2	32.4	38.0	42,0	30,0	30,0	3/ 8	30,0	47,9	47.2	42.2	42.2	40,0	42.2	40,2 31.2	50.0
Dead Slow Ahead	24.5	25.7	35.7	29.8	30.4	26.9	27.0	33.7	33.7	24.1	24.5	27.8	24.0	31.4	31.4	29.2	28.7	28.7	33.0	30.8	30.8	27.9	30.8	24.0	35.7
Dead Slow Allead	24,0	20,7	55,1	23,0	30,4	20,5	27,0	55,7	55,7	24,1	24,5	27,0	24,0	51,4	51,4	23,2	20,7	20,7	33,0	50,0	50,0	21,5	50,0	24,0	55,7
P=(n/nmax)^3*Pmax	IKWI	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]		
Full Ahead	20724	[[(11]]	[[(11]]	32263	20	17881	15088	14362	11124	8431	9276	23704	7719	12071	12071	5972	15782	14262	12000	21174	21174	10495	21174		
Half Ahead	9433			17398	11	10348	6868	7745	7005	3557	5308	13717	4067	5721	5721	3505	9330	6017	6116	13334	13334	6073	13334		
Slow Ahead	3235			7132	7	6133	3516	3175	2955	1674	2239	4705	1799	2760	2760	2238	4552	2831	2229	5625	5625	3110	5625		1
Dead Slow Ahead	1179			1511	3	1817	1081	968	1390	768	974	1715	759	1413	1413	1320	1769	1300	765	2023	2023	1312	2023		1
	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von		
	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax		
Full Ahead	25,9		1	56,5	18,4	19,2	27,5	56,5	30,5	15,4	14,0	29,6	14,1	28,3	28,3	11,3	21,1	26,0	61,2	30,5	30,5	17,4	30,5	11,3	61,2
Half Ahead	11,8			30,5	10,4	11,1	12,5	30,5	19,2	6,5	8,0	17,1	7,4	12,5	12,5	6,6	12,5	11,0	28,8	19,2	19,2	10,1	19,2	6,5	30,5
Slow Ahead	4,0			12,5	6,0	6,6	6,4	12,5	8,1	3,1	3,4	5,9	3,3	6,0	6,0	4,2	6,1	5,2	10,5	8,1	8,1	5,2	8,1	3,1	12,5
Dead Slow Ahead	1,5			2,6	2,8	2,0	2,0	3,8	3,8	1,4	1,5	2,1	1,4	3,1	3,1	2,5	2,4	2,4	3,6	2,9	2,9	2,2	2,9	1,4	3,8
P=(n/nmax)^2*Pmax	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]	[KW]		
Full Ahead	32520			39016	35	30994	23213	17369	16527	15739	17852	35556	14845	19746	19746	12362	26491	22343	15310	31458	31458	18786	31458		
Half Ahead	19243			25849	24	21524	13736	11507	12142	8853	12304	24691	9684	11441	11441	8664	18660	12568	9262	23112	23112	13046	23112		
Slow Ahead	9429			14264	17	15187	8791	6350	6830	5355	6921	12099	5622	7038	7038	6425	11564	7603	4725	13001	13001	8349	13001		
Dead Slow Ahead	4811			5070	10	6750	4005	2877	4132	3187	3972	6173	3162	4504	4504	4519	6158	4524	2315	6574	6574	4696	6574		ļ
	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von		
	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax		
Full Ahead	40,6			68,4	32,3	33,3	42,3	68,4	45,3	28,7	27,0	44,4	27,0	43,1	43,1	23,3	35,5	40,7	72,1	45,3	45,3	31,2	45,3	23,3	72,1
Half Ahead	24,0			45,3	22,1	23,1	25,0	45,3	33,3	16,1	18,6	30,9	17,6	25,0	25,0	16,4	25,0	22,9	43,6	33,3	33,3	21,7	33,3	16,1	45,3
Slow Anead	11,8			25,0	15,4	16,3	16,0	25,0	18,7	9,8	10,5	15,1	10,2	15,4	15,4	12,1	15,5	13,9	22,2	18,7	18,7	13,9	18,7	9,8	25,0
Dead Slow Anead	0,U			8,9	9,2	7,2	1,3	11,3	11,3	5,8	0,0	1,1	5,8	9,8	9,8	ŏ,5	0,3	0,3	10,9	9,5	9,5	۵, ۱	9,5	5,8	11,3
D-(n/nmax)\\4*Dmax	[K/W]	[[()]]	[KW]	[K/W]	[K/M]	[[2]]	[[(14/1	[K/M]	[K/M]	[K/M]	[K/M]	LK/WU	[[/]]	[[/]]	[K/M]	[K/M]	[K/W]	[[2]]	[[(14/1	LK/WJ	[K/W]	[[[]]]	[[(1)]]		┝────
Full Abood	51021			/7100	62	53700	25712	21004	24554	20270	3/256	[[\ W] 53322	28549	30061	30061	25595	11166	35004	18022	46720	46720	23607	46729		├
Half Ahead	30255			38/0/	51	44760	27/71	17004	24004	29319	28522	44444	20040	22882	22882	20000	37320	26252	14025	40730	40730	28022	40738		
Slow Ahead	27478		1	28520	42	37606	214/1	12700	15785	17138	20022	31111	17568	17947	17047	18445	29380	20203	10018	30046	30046	20022	30046		+
Dead Slow Ahead	19627		1	17007	-+3	25071	14834	8548	12277	13220	16206	22222	13176	1/34/	14358	15470	23300	15752	7012	21366	21366	16813	21366		+
Dedu Giow Arleau	13021			17007		20071	14034	0040	12211	10220	10200		13170	14000	14000	13470	21400	10/02	1012	21300	21300	10013	21300		+
	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von	[%] von		1
	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax		
Full Ahead	63.7	- THMA	1 1100	82.7	56.9	57.7	65.0	82.7	67.3	53.6	52.0	66.7	52.0	65.7	65.7	48.3	59.6	63.8	84.0	67.3	67.3	55.9	67.3	48.3	84.9
Half Ahead	49.0			67.3	47 1	48.1	50.0	67.3	57.7	40.2	43.1	55.6	42.0	50.0	50.0	40.4	50.0	47 9	66.0	57.7	57.7	46.6	57 7	40.2	67.3
Slow Ahead	34.3		1	50.0	39.2	40.4	40.0	50.0	43.3	31.3	32.4	38.9	32.0	39.2	39.2	34.8	39.4	37.2	47.2	43.3	43.3	37.2	43.3	31.3	50.0
Dead Slow Ahead	24.5		1	29.8	30.4	26.9	27.0	33.7	33.7	24.1	24.5	27.8	24.0	31.4	31.4	29.2	28.7	28.7	33.0	30.8	30.8	27.9	30.8	24.0	33.7
	21,0	1		20,0	00,1	20,0	21,0	00,1	, 00,7	21,1	2 ,0	L1,0	21,0		,.	20,2	20,1	20,1	00,0	00,0	00,0	21,0	00,0	L 1,0	

Daten aus den *Pilotcards* nach Anhang 1 Berechnung der Analsyseergebnisse in den Abbildungen 5.2 bis 5.12 und Tabelle 5.3 Analyseergebnisse in Tabelle 5.6 Berechnung der Leistung P für die Exponenten i = 3, 2, 1 (nach Kapitel 5.3)